📄 tocrtpoly.m
字号:
function y = tocrt(f,m)
%
% Compute the representation of the polynomial f using the
% using the Chinese Remainder Theorem (CRT) with
% moduli m = {m1,m2,...,mr}. It is assumed (without checking)
% that the moduli are relatively prime.
% m is passed in as a cell array containing polynomial vectors
% and y is returned as a cell array containing polynomial vectors
%
% function y = tocrt(f,m)
%
% f = polynomial
% m = set of modulo polynomials
%
% y = CRT form of f
% Copyright 1999 by Todd K. Moon
[n,r] = size(m);
for i=1:r
[q,y{i}] = polydiv(f,m{i});
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -