📄 fromcrtpoly.m
字号:
function [f,gamma] = fromcrtpoly(y,m,gammain)
%
% Compute the representation of the polynomial f using the Chinese Remainder
% Theorem (CRT) using the moduli m = [m1,m2,...,mr]. It is assumed
% (without checking) that the moduli are relatively prime.
% Optionally, the gammas may be passed in (speeding computation), and
% are returned as optional return values.
%
% function [f,gamma] = fromcrtpoly(y,m,gammain)
% function [f] = fromcrtpoly(y,m)
% function [f,gamma] = fromcrtpoly(y,m)
% function [f] = fromcrtpoly(y,m,gammain)
%
% y = list of polynomials (cell array)
% m = list of moduli (cell array)
% gammain = (optional)list of gammas (cell array)
%
% f = reconstructed polynomial
% gamma = gamma
% Copyright 1999 by Todd K. Moon
r = length(y);
if(nargin==2)
mp = 1;
for i=1:r
mp = polymult(mp,m{i});
end
f = 0;
for i=1:r
[q,rm] = polydiv(mp,m{i});
[g,b,y1] = gcdpoly(q,m{i});
gamma{i} = polymult(q,b);
f = polyadd(f,polymult(gamma{i},y{i}));
end
else % use the passed-in gammas
f = 0;
for i=1:r
f = polyadd(f,polymult(gammain{i},y{i}));
end
gamma = gammain;
end
% Take the result modulo m
[q,f] = polydiv(f,mp);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -