📄 lsfilt.m
字号:
function [h,X] = lsfilt(f,d,m,type)
%
% Determine a least-squares filter h with m coefficients
%
% function [h,X] = lsfilt(f,d,m,type)
%
% f = input data
% d = desired output data
% m = order of filter
% type = data matrix type
% type=1: "covariance" method 2: "autocorrelation" method
% 3: prewindowing 4: postwindowing
%
% h = least-squares filter
% X = (optional) data matrix
% Copyright 1999 by Todd K. Moon
X = []; % clear the data matrix
N = length(f);
f = f(:); d = d(:); % turn into column vectors
% build the data matrix
if(type==2 | type == 3) % prewindowed data
for i=1:m-1
X = [X;[f(i:-1:1) zeros(1,m-i)]];
end
end
for i=m:N
X = [X;f(i:-1:i-m+1)'];
end
if(type==2 | type==4) % postwindowed data
for i=1:m-1
X = [X;[zeros(1,i) f(N:-1:N-m+i+1)']];
end
end
% Find the least-squares solution using the pseudo-inverse
h = pinv(X)*d; % compute least-squares solution
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -