📄 hmmapiupn.m
字号:
function [A,pi] = hmmApiupn(y,alphahat,betahat,f,HMM)
%
% update the HMM probabilities A and pi using the normalized forward and
% backward probabilities alphahat and betahat
%
% function [A,pi] = hmmapiupn(y,alphahat,betahat,HMM)
%
% y = input sequence
% alphahat = normalized alphas
% betahat = normalized betas
% HMM = current model parameters
%
% A = updated transition probability matrix
% pi = updated initial probability matrix
% Copyright 1999 by Todd K. Moon
[S,S] = size(HMM.A); [m,T] = size(y);
A = HMM.A;
for j=1:S % from state
for i=1:S % to state
as(i,1)=sum(HMM.A(i,j)*(alphahat(j,1:end-1).*f(2:end,i)'.*betahat(i,2:end)));
end
A(:,j) = as/sum(as);
end
Pym = sum(alphahat(:,1).* betahat(:,1));
pi = alphahat(:,1).*betahat(:,1)/Pym;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -