📄 tohankel.m
字号:
function [A,d] = tohankel(A,r)
%
% Determine the matrix nearest to A which is Hankel and has rank r
% using the composite mapping algorithm
%
% function A = tohankel(A,r)
%
% A = input/output matrix
% r = desired rank
%
% Ouptut A = Hankel matrix with desired properties
% d = norm of difference between matrices
% Copyright 1999 by Todd K. Moon
[m,n] = size(A);
if(r > min(m,n))
error('Cannot satisfy rank requirement');
end
np = m+n-1;
% Build the linear structure matrix S and its pseudoinverse operator
i1 = eye(m);
S = [];
for i=1:n
S = [S; [zeros(m,i-1) i1 zeros(m,np-m-i+1)] ];
end
S
numiter = 0; maxiter = 200;
if(nargout == 2)
saveA = A;
end
v = zeros(np,1); % vector of parameters
while(numiter < maxiter)
numiter = numiter+1;
oldA = A;
a = A(:); % vectorize
for i=1:np % enforce the Hankel property
v(i) = sum(a(logical(S(:,i))))/sum(S(:,i));% average over corresponding elt's of X
end
A = reshape(S*v,m,n); % from v find A
[ua,sa,va] = svd(A); % enforce the rank property
A = zeros(size(A));
for i=1:r
A = A+ sa(i,i)*ua(:,i)*va(:,i)';
end
if(norm(A-oldA) < 1.e-8)
break;
end
oldA = A;
end
if(nargout == 2)
d = norm(saveA - A);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -