⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme.txt

📁 Mathematical Methods by Moor n Stiling.
💻 TXT
📖 第 1 页 / 共 5 页
字号:
%
% y = sequence
% m = [m1,m2,...,mr]
% gammain (optional) = set of gamma factors.  
%   If not passed in, gamma is computed
%
% x = integer representation
% gamma = gamma values


fromcrtpoly.m
% 
% Compute the representation of the polynomial f using the Chinese Remainder
% Theorem (CRT) using the moduli m = [m1,m2,...,mr].  It is assumed 
% (without checking) that the moduli are relatively prime.  
% Optionally, the gammas may be passed in (speeding computation), and
% are returned as optional return values.
%
% function [f,gamma] = fromcrtpoly(y,m,gammain)
% function [f] = fromcrtpoly(y,m)
% function [f,gamma] = fromcrtpoly(y,m)
% function [f] = fromcrtpoly(y,m,gammain)
%
% y = list of polynomials (cell array)
% m = list of moduli (cell array)
% gammain = (optional)list of gammas (cell array)
%
% f = reconstructed polynomial
% gamma = gamma


fromhankel.m
%
% Pull sequential data out of a Hankel matrix X 
%
% X = Hankel matrix
% d = (optional) dimension of data
%
% x = Sequential data


fromhankel2.m
% Pull sequential data out of a Hankel matrix X  (cell array version)
%
% X = Hankel matrix
% d = (optional) dimension of data
%
% x = Sequential data (in a cell array)


gam1.m
% 
% Determine the optimum bet on a subfair track
%
% function [B,b0,b,l] = gam1(p,o)
%
% p = probability of win
% o = subfair odds
%
% B = other bets
% b0 = amount witheld
% b = bet


gcdint1.m
% 
% Compute (only) the GCD (a,b) using the Euclidean algorithm
%
% function g = gcdint1(b,c)
%
% b,c = integers
%
% g = GCD(b,c)


gcdint2.m
% 
% Compute the GCD g = (b,c) using the Euclidean algorithm
% and return s,t such that bs+ct = g
%
% function [g,s,t] = gcdint2(b,c)
%
% b,c = integers
% g = GCD(b,c)
% s,t = integers


gcdpoly.m
% 
% Compute the GCD g = (b,c) using the Euclidean algorithm
% and return s,t such that bs+ct = g, where b and c are polynomials
% with real coefficients
%
% function [g,s,t] = gcdpoly(b,c)
%
% b,c = polynomials
% thresh = (optional) threhold argument used to truncate small remainders
%
% g = GCD(b,c)
% s,t = polynomials


genardat.m
% 
% Generate N points of AR data with a = [a(1) a(2), \ldots, a(n)]'
% and input variance sigma^2
%
% function x = genardat(a,sigma,N)
%
% a = AR parameters
% sigma = standard deviation of input noise
% N = number of points
%
% x = AR process


greedyperm.m
% 
% Using a greedy algorithm, determine a permutation P such that Px=z
% as closely as possible.
%
% function P = greedyperm(x,z)


greedyperm2.m
% 
% Using a greedy algorithm, determine a permutation P such that Px=z
% as closely as possible.
% This algorithm is more complex than greedyperm
%
% function P = greedyperm2(x,z)


haar1.m
% Do the computations for the Haar transform, working toward the
% wavelet lifting transform
%
% s = input data
% nlevel = number of levels
%
% h = Haar transform


haarinv1.m
% Do the computations for the inverse Haar transform, working toward the
% wavelet lifting transform


hmmApiup.m
% 
% Update the A and pi probabilities in the HMM using the forward and
% backward probabilities alpha and beta
%
% function [A,pi] = hmmapiup(y,alpha,beta,HMM)
%
% y = input sequence
% alpha = forward probability
% beta = backward probability
% f = distribution
% HMM = model parameters
%
% A = updated state transition probability
% pi = updated initial state probability


hmmab.m
% 
% Compute the forward and backward probabilities for the model HMM
% and the output probabilities


hmmdiscfup.m
% 
% Update the output probability distribution f of the HMM using the forward
% and backward probabilities alpha and beta
%
% function f = hmmdiscfup(y,alpha,beta,HMM)
%
% y = input sequence
% alpha = forward probabilities
% beta = backward probabilities
% HMM = current model parameters
%
% f = updated distribution


hmmfupdate.m
% 
% Provide an update to the state output distributions for the HMM model
%
% function f = hmmfupdate(y,alpha,beta,HMM)
% 
% y = input sequence
% alpha = forward probabilities
% beta = backward probabilities
% HMM = current model parameters
% 
% f = updated distribution


hmmgausfup.m
% 
% Update the Gaussian output distribution f of the HMM using the
% probabilities alpha and beta
%
% function f = hmmgausfup(y,alpha,beta,HMM)
% 
% y = input sequence
% alpha = forward probabilities
% beta = backward probabilities
% HMM = current model parameters
% 
% f = updated distribution


hmmlpyseq.m
%
% Find the log likelihood of the sequence y[1],y[2],...,y[T], 
% i.e., compute log P(y|HMM)
%
% function lpy = hmmlpyseq(y,HMM)
%
% y = input sequence
% HMM = current model parameters


hmmupdate.m
% 
% Compute updated HMM model from observations (nonnormalized)
%
% function HMM = hmmupdate(y,HMM) 
%
% y = output sequence
% HMM = current model parameters
%
% hmmo = updated model


ifs2.m
% test some ifs stuff


ifs2ex.m
% find an affine transformation Ax + b that transforms from
% {x00,x10,x20,x30} to {x01,x11,x21,x31}


initvit2.m
% 
% Initialize the data structures and pointers for the Viterbi algorithm
%
% function initvit2(intrellis, inbranchweight, inpathlen, innormfunc)
%
% intrellis: a description of the successor nodes using a list, e.g.
%          intrellis{1} = [1 3]; intrellis{2} = [3 4];
%          intrellis{3} = [1 2]; intrellis{4} = [3 4];
% inbranchweight: weights of branches used for comparison, saved as
%    cells in branchweight{state_number, branch_number}
%    branchweight may be a vector
%    e.g.  branchweight{1,1} = 0; branchweight{1,2} = 6;
%          branchweight{2,1} = 3; branchweight{2,2} = 3;
%          branchweight{3,1} = 6; branchweight{3,2} = 0;
%          branchweight{4,1} = 3; branchweight{4,2} = 3;
% inpathlen: length of window over which to compute
% normfun: the norm function used to compute the branch cost


interplane.m
% 
% find the intersecting point for the planes
%  m1'(x-x1) = 0   and  m2'(x-x2)=0.
%
% function x = interplane(m1,x1,m2,x2)
%
% m1 = normal to plane
% x1 = point on plane
% m2 = normal to plane
% x2 = point on plane
%
% x = intersecting point


invdiff.m
% 
% Compute the inverse differences for a rational interpolation function,
% returning the vector of inverse differences that are necessary for
% interpolation
%
% function phis = invdiff(ts,fs)
%
% ts = vector of independent variable
% fs = vector of dependent variable
%
% phis = inverse differences


jordanex.m
% example of Jordan forms


kaisfilt.m
% test the design of a Kaiser filter


kronsum.m
%
% Kronecker sum of A and B.  A and B are assumed square.
%
% function C = kronsum(A,B).  


lagrangepoly.m
% 
% Lagrange interpolator


latexform.m
% 
% Display a matrix X in latex form
%
%function latexform(fid,X,[nohfill])
% 
% fid = output file id (use 1 for terminal display)
% X = matrix of vector to display
% nohfill = 1 if no hfill is wanted


lfsr.m
% 
% Produce m outputs of an lfsr with coefficient c and initial values y0
%
% function y = lfsr(c,y0,m)
% y0 = [y_0,...,y_{p-2},y_{p-1}]
% c = [c(1),c(2),...,c(p)]
% 
% y_j = sum_{i=1}^p y_{j-i} c(i)


lfsrfind.m
% 
% Find a good lfsr c to match Ac=b
%
% function c = lfsrfind(A,b)


lfsrfind2.m
% 
% Find a good lfsr c to match Ac=b
% where A and b are formed by the lfsr
% In this case, feed the error back around
%
% function c = lfsrfind2(y,m)


lsdata.m
% Make least-squares data matrices 


makemarkov.m
% 
% Return the sequence of n impulse response samples into the cell array y
% y{1},y{2}, ... y{n}
%
% function y = makemarkov(A,B,C,n)
%
% (A,B,C) = system
% n = number of samples
%
% y = cell array of impulse responses


makeperm.m
% Return all permutations of length n


maketoeplitz.m
% 
% Form a toeplitz matrix from the input data y
%
% function [H] = maketoeplitz(y,m,n)
%
% y = input data = [y1 y2 ...] (a series of vectors in a _row_)
% m = number of block rows in H
% n = number of block columns in H


marv.m
% 
% Prony: given a sequence of (supposedly) pure sinusoidal data, 
% determine the frequency using model methods
%
% function f = marv(x,fs)
% x = data sequence
% fs = sampling rate
%
% f = frequencies found


masseyinit.m
% Initialize the iteratively called massey's algorithm
%
% function masseyinit()


masseyit.m
% 
% Compute the lfsr connection polynomial using Massey's algorithm
% accepting new data at each iteration.
% masseyinit should be called before calling this the first time
%
% y = new data point
%
% c = updated connection polynomial


miniapprox1.m
% minimax approximation example


modaldata1.m
% data for a modal analysis problem


myplaysnd.m
% 
% Modified and simplified from playsnd, to make the sample rate stuff work


n2b.m
% convert n to an m-bit binary representation


neville.m
% 
% Neville's algorithm for computing a value for an interpolating polynomial
% y = NEVILLE(x,X,Y) takes the (xi,yi) coordinate pairs in the
% vectors X and Y and computes the value of the unique
% interpolating polynomial that passes through the list of points
% at the given value of x. 
% 
% function y = neville(x, X, Y)
%
% x = interpolated point
% X = X data
% Y = Y data
%
% y = interpolated value


nntrain2.m
% 
% train a neural network using the input/output training data [x,d]
% with sequential selection of the data
%
% function w = nntrain(x,d,m,ninput,mu)
%
% x = [x(1) x(2) ... x(N)]   
% d= [d(1) d(2) ... d(N)]
% nlayer = number of layers
% m = number of neurons on each layer, 
%     m(1) = input layer, ... m(nlayer+1) = ouput layer
% mu = steepest descent step size
% alpha = (optional) momentum constant
% maxiter = (optional) maximum number of iterations (w = no maximum)
% w = (optional) starting weights
%
% err = (optional) total squared error from training


pade1.m
% Pade example


padefunct.m
% 
% Find the Pade approximation from the Maclaurin series coefficients
%
% function [A,B] = padefunct(c,m,k)
%
% c = Maclaurin series coefficients (need m+k+1)
% m = degree of numerator polynomial
% k = degree of denominator polynomial
%
% A = coefficients of numerator polynomial (in Matlab order)
% B = coefficients of denominator polynomial (in Matlab order)


permer.m
% 
% function permlist = permer(n1,p,perm,permnew,permlist)


pisexamp.m
% Example for Pisarenko Harmonic Decomposition


plotbernapprox.m
% plot the Benstein polynomial approximation to $f(t) = e^t$


plotbernpoly.m
% plot the Benstein polynomial


plotfplane.m
% plot a function and a linear approximating surface


plotplane.m
% determine points in the plane m'(x-x0) = 0 for plotting purposes
% 


polyadd.m
%
% Add the polynomials p=a+b
% 
% function p = polyadd(a,b)
%
% a,b = polynomial
%
% p = polynomial sum.


polydiv.m
% 
% Divide a(x)/b(x), and return quotient and remainder in q and r
% Coefficients are assumed to be in Matlab standard order (highest order first)
%
%
% function [q,r] = polydiv(a,b)
%
% a = numerator
% b = denominator
%
% q = quotient
% r = remainder


polydivgfp.m
% 
% Divide a(x)/b(x), and return quotient and remainder in q and r
% using arithmetic in GF(p)
% Coefficients are assumed to be in Matlab standard order (highest order first)
%
% function [q,r] = polydivgfp(a,b)
%
% a = numerator
% b = denominator
%
% q = quotient
% r = remainder


polymult.m
% 
% Multipoly the polynomials p=a*b
%
% function p = polymult(a,b)
%
% a,b = polynomials
%
% p = product


polysub.m
% 
% Subtract the polynomials p=a-b
%
% a,b = polynomials
%
% p = difference


psdarma.m
%
% Plot the psd of an arma model
%
% function [w,h] = psdarma(b,a)
%
% b = numerator coefficients
% a = denominator coefficients
%
% w = frequency values
% h = absolute value of response


ratinterp.m
% 
% Compute the rational function interpolation
% from the data in ts and fs.
% Polynomial coefficients returned in Matlab order (largest to smallest)


ratinterp1.m
% 
% Compute a single interpolated point f(t) given the interpolating data
% and the inverse differences
%
% function f = ratinterp1(t,ts,fs,phis)
%
% t = point at which to evaluate
% ts = vector of independent data
% fs = vector of depdendent data
% phis = inverse differences
%
% f = interpolated value


ratintfilt.m

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -