⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaussmixp.m

📁 matlab的一个第三方语音信号处理工具箱
💻 M
字号:
function [lp,rp,kh,kp]=gaussmixp(y,m,v,w,a,b)
%GAUSSMIXP calculate probability densities from a Gaussian mixture model
%
% Inputs: n data values, k mixtures, p parameters, q data vector size
%
%   Y(n,q) = input data
%   M(k,p) = mixture means for x(p)
%   V(k,p) or V(p,p,k) variances (diagonal or full)
%   W(k,1) = weights
%   A(q,p), B(q) = transformation: y=x*a'+b' (where y and x are row vectors)
%            if A is omitted, it is assumed to be the first q rows of the
%            identity matrix. B defaults to zero.
%   Note that most commonly, q=p ans A and B are omitted entirely.
%
% Outputs
%
%  LP(n,1) = log probability of each data point
%  RP(n,k) = relative probability of each mixture
%  KH(n,1) = highest probability mixture
%  KP(n,1) = relative probability of highest probability mixture

%      Copyright (C) Mike Brookes 2000-2009
%      Version: $Id: gaussmixp.m,v 1.2 2009/04/06 07:42:34 dmb Exp $
%
%   VOICEBOX is a MATLAB toolbox for speech processing.
%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   This program is free software; you can redistribute it and/or modify
%   it under the terms of the GNU General Public License as published by
%   the Free Software Foundation; either version 2 of the License, or
%   (at your option) any later version.
%
%   This program is distributed in the hope that it will be useful,
%   but WITHOUT ANY WARRANTY; without even the implied warranty of
%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%   GNU General Public License for more details.
%
%   You can obtain a copy of the GNU General Public License from
%   http://www.gnu.org/copyleft/gpl.html or by writing to
%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[n,q]=size(y);
[k,p]=size(m);

if nargin<4
    w=repmat(1/k,k,1);
    if nargin<3
        v=ones(k,p);
    end
end
fv=ndims(v)>2 || size(v,1)>k; % full covariance matrix is requested
if nargin>4         % need to modify distribution means
    if nargin>5
        m=m*a'+repmat(b',k,1);
    else
        m=m*a';
    end
    v1=v;
    v=zeros(q,q,k);
    if fv
        for ik=1:k
            v(:,:,ik)=a*v1(:,:,ik)*a';
        end
    else
        for ik=1:k
            v(:,:,ik)=(a.*repmat(v1(ik,:),q,1))*a';
        end
        fv=1;
    end
elseif q<p     % need to select coefficient subset
    m=m(:,1:q);
    if fv
        v=v(1:q,1:q,:);
    else
        v=v(:,1:q);
    end
end

memsize=voicebox('memsize');    % set memory size to use

lp=zeros(n,1);
rp=zeros(n,k);
wk=ones(k,1);

if ~fv          % diagonal covariance
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Diagonal Covariance matrices  %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % If data size is large then do calculations in chunks

    nb=min(n,max(1,floor(memsize/(8*q*k))));    % chunk size for testing data points
    nl=ceil(n/nb);                  % number of chunks
    jx0=n-(nl-1)*nb;                % size of first chunk
    im=repmat((1:k)',nb,1);
    wnb=ones(1,nb);
    wnj=ones(1,jx0);

    vi=-0.5*v.^(-1);                % data-independent scale factor in exponent
    lvm=log(w)-0.5*sum(log(v),2);   % log of external scale factor (excluding -0.5*q*log(2pi) term)

    % first do partial chunk

    jx=jx0;
    ii=1:jx;
    kk=repmat(ii,k,1);
    km=repmat(1:k,1,jx);
    py=reshape(sum((y(kk(:),:)-m(km(:),:)).^2.*vi(km(:),:),2),k,jx)+lvm(:,wnj);
    mx=max(py,[],1);                % find normalizing factor for each data point to prevent underflow when using exp()
    px=exp(py-mx(wk,:));            % find normalized probability of each mixture for each datapoint
    ps=sum(px,1);                   % total normalized likelihood of each data point
    rp(ii,:)=(px./ps(wk,:))';                % relative mixture probabilities for each data point (columns sum to 1)
    lp(ii)=log(ps)+mx;

    for il=2:nl
        ix=jx+1;
        jx=jx+nb;                    % increment upper limit
        ii=ix:jx;
        kk=repmat(ii,k,1);
        py=reshape(sum((y(kk(:),:)-m(im,:)).^2.*vi(im,:),2),k,nb)+lvm(:,wnb);
        mx=max(py,[],1);                % find normalizing factor for each data point to prevent underflow when using exp()
        px=exp(py-mx(wk,:));            % find normalized probability of each mixture for each datapoint
        ps=sum(px,1);                   % total normalized likelihood of each data point
        rp(ii,:)=(px./ps(wk,:))';                % relative mixture probabilities for each data point (columns sum to 1)
        lp(ii)=log(ps)+mx;
    end
else
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Full Covariance matrices  %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    pl=q*(q+1)/2;
    lix=1:q^2;
    cix=repmat(1:q,q,1);
    rix=cix';
    lix(cix>rix)=[];                                        % index of lower triangular elements
    lixi=zeros(q,q);
    lixi(lix)=1:pl;
    lixi=lixi';
    lixi(lix)=1:pl;                                        % reverse index to build full matrices
    v=reshape(v,q^2,k);
    v=v(lix,:)';                                            % lower triangular in rows

    % If data size is large then do calculations in chunks

    nb=min(n,max(1,floor(memsize/(24*q*k))));    % chunk size for testing data points
    nl=ceil(n/nb);                  % number of chunks
    jx0=n-(nl-1)*nb;                % size of first chunk
    wnb=ones(1,nb);
    wnj=ones(1,jx0);

    vi=zeros(q*k,q);                    % stack of k inverse cov matrices each size q*q
    vim=zeros(q*k,1);                   % stack of k vectors of the form inv(v)*m
    mtk=vim;                             % stack of k vectors of the form m
    lvm=zeros(k,1);
    wpk=repmat((1:q)',k,1);

    for ik=1:k

        % these lines added for debugging only
        %             vk=reshape(v(k,lixi),q,q);
        %             condk(ik)=cond(vk);
        %%%%%%%%%%%%%%%%%%%%
        [uvk,dvk]=eig(reshape(v(ik,lixi),q,q));      % convert lower triangular to full and find eigenvalues
        dvk=diag(dvk);
        vik=-0.5*uvk*diag(dvk.^(-1))*uvk';   % calculate inverse
        vi((ik-1)*q+(1:q),:)=vik;           % vi contains all mixture inverses stacked on top of each other
        vim((ik-1)*q+(1:q))=vik*m(ik,:)';   % vim contains vi*m for all mixtures stacked on top of each other
        mtk((ik-1)*q+(1:q))=m(ik,:)';       % mtk contains all mixture means stacked on top of each other
        lvm(ik)=log(w(ik))-0.5*sum(log(dvk));       % vm contains the weighted sqrt of det(vi) for each mixture
    end
    %
    %         % first do partial chunk
    %
    jx=jx0;
    ii=1:jx;
    xii=y(ii,:).';
    py=reshape(sum(reshape((vi*xii-vim(:,wnj)).*(xii(wpk,:)-mtk(:,wnj)),q,jx*k),1),k,jx)+lvm(:,wnj);
    mx=max(py,[],1);                % find normalizing factor for each data point to prevent underflow when using exp()
    px=exp(py-mx(wk,:));  % find normalized probability of each mixture for each datapoint
    ps=sum(px,1);                   % total normalized likelihood of each data point
    rp(ii,:)=(px./ps(wk,:))';                % relative mixture probabilities for each data point (columns sum to 1)
    lp(ii)=log(ps)+mx;

    for il=2:nl
        ix=jx+1;
        jx=jx+nb;        % increment upper limit
        ii=ix:jx;
        xii=y(ii,:).';
        py=reshape(sum(reshape((vi*xii-vim(:,wnb)).*(xii(wpk,:)-mtk(:,wnb)),q,nb*k),1),k,nb)+lvm(:,wnb);
        mx=max(py,[],1);                % find normalizing factor for each data point to prevent underflow when using exp()
        px=exp(py-mx(wk,:));  % find normalized probability of each mixture for each datapoint
        ps=sum(px,1);                   % total normalized likelihood of each data point
        rp(ii,:)=(px./ps(wk,:))';                % relative mixture probabilities for each data point (columns sum to 1)
        lp(ii)=log(ps)+mx;
    end
end
lp=lp-0.5*q*log(2*pi);
if nargout >2
    [kp,kh]=max(rp,[],2);
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -