📄 a00099.html
字号:
</td> <td><p>returns optimal scale for polynomial.<p>Computes an optimal scale factor for polynomial <em>p</em>. Thus ensuring that evaluating the polynomial will not result in overflow or underflow.<p><dl compact><dt><b>Parameters:</b></dt><dd> <table border="0" cellspacing="2" cellpadding="0"> <tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>p</em> </td><td>a polynomial.</td></tr> </table></dl><dl compact><dt><b>See also:</b></dt><dd>U <a class="el" href="a00099.html#g663581aef6853ed86df03a35505c9ebd">scalePoly(Polynomial<T>& p, const Polynomial<U>& q)</a>; </dd></dl><p>Definition at line <a class="el" href="a00107.html#l01253">1253</a> of file <a class="el" href="a00107.html">Polynomial.h</a>. </td> </tr></table><a class="anchor" name="g1ca5c1a34fcdcadb083a25ecf0e1a995"></a><!-- doxytag: member="Polynomial.h::modulus" ref="g1ca5c1a34fcdcadb083a25ecf0e1a995" args="(const Polynomial< T > &p, Polynomial< U > &q)" --><p><table class="mdTable" cellpadding="2" cellspacing="0"> <tr> <td class="mdRow"> <table cellpadding="0" cellspacing="0" border="0"> <tr> <td class="mdPrefix" colspan="4">template<class T, class U> </td> </tr> <tr> <td class="md" nowrap valign="top">void modulus </td> <td class="md" valign="top">( </td> <td class="md" nowrap valign="top">const <a class="el" href="a00090.html">Polynomial</a>< T > & </td> <td class="mdname" nowrap> <em>p</em>, </td> </tr> <tr> <td class="md" nowrap align="right"></td> <td class="md"></td> <td class="md" nowrap><a class="el" href="a00090.html">Polynomial</a>< U > & </td> <td class="mdname" nowrap> <em>q</em></td> </tr> <tr> <td class="md"></td> <td class="md">) </td> <td class="md" colspan="2"></td> </tr> </table> </td> </tr></table><table cellspacing="5" cellpadding="0" border="0"> <tr> <td> </td> <td><p>computes the modulus of polynomial <em>p</em>.<p>Computes the modulus of polynomial <em>p</em>, such as for polynomial:<p><p class="formulaDsp"><img class="formulaDsp" alt="\[p(x)=a_0+a_1{x}+a_2{x^2}+...+a_n{x^n}\]" src="form_33.png"><p><p>the resulting polynomial <em>q</em> will be :<p><p class="formulaDsp"><img class="formulaDsp" alt="\[q(x)=|a_0|+|a_1|{x}+|a_2|{x^2}+...+|a_n|{x^n}\]" src="form_34.png"><p><p><dl compact><dt><b>Parameters:</b></dt><dd> <table border="0" cellspacing="2" cellpadding="0"> <tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>p</em> </td><td>a polynomial. </td></tr> <tr><td valign="top"><tt>[out]</tt> </td><td valign="top"><em>q</em> </td><td>the modulus polynomial p. </td></tr> </table></dl><p>Definition at line <a class="el" href="a00107.html#l01315">1315</a> of file <a class="el" href="a00107.html">Polynomial.h</a>. </td> </tr></table><a class="anchor" name="g663581aef6853ed86df03a35505c9ebd"></a><!-- doxytag: member="Polynomial.h::scalePoly" ref="g663581aef6853ed86df03a35505c9ebd" args="(Polynomial< T > &p, const Polynomial< U > &q)" --><p><table class="mdTable" cellpadding="2" cellspacing="0"> <tr> <td class="mdRow"> <table cellpadding="0" cellspacing="0" border="0"> <tr> <td class="mdPrefix" colspan="4">template<class T, class U> </td> </tr> <tr> <td class="md" nowrap valign="top">U scalePoly </td> <td class="md" valign="top">( </td> <td class="md" nowrap valign="top"><a class="el" href="a00090.html">Polynomial</a>< T > & </td> <td class="mdname" nowrap> <em>p</em>, </td> </tr> <tr> <td class="md" nowrap align="right"></td> <td class="md"></td> <td class="md" nowrap>const <a class="el" href="a00090.html">Polynomial</a>< U > & </td> <td class="mdname" nowrap> <em>q</em></td> </tr> <tr> <td class="md"></td> <td class="md">) </td> <td class="md" colspan="2"></td> </tr> </table> </td> </tr></table><table cellspacing="5" cellpadding="0" border="0"> <tr> <td> </td> <td><p>rescales a polynomial using an optimal scale.<p>Computes an optimal scale factor for polynomial <em>p</em>. Thus ensuring that evaluating the polynomial will not result in overflow or underflow, then scales the polynomial <em>p</em>.<p><dl compact><dt><b>Parameters:</b></dt><dd> <table border="0" cellspacing="2" cellpadding="0"> <tr><td valign="top"><tt>[in,out]</tt> </td><td valign="top"><em>p</em> </td><td>a polynomial. </td></tr> <tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>q</em> </td><td>the modulus polynomial of p.</td></tr> </table></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="a00099.html#g663581aef6853ed86df03a35505c9ebd">scalePoly(Polynomial<T>& p, const Polynomial<U>& q)</a><br> <a class="el" href="a00099.html#g1ca5c1a34fcdcadb083a25ecf0e1a995">modulus(const Polynomial<T>& p, Polynomial<U>& q)</a> </dd></dl><p>Definition at line <a class="el" href="a00107.html#l01293">1293</a> of file <a class="el" href="a00107.html">Polynomial.h</a>. </td> </tr></table><a class="anchor" name="gff48f345e1c619a7fcfef4fec02674f8"></a><!-- doxytag: member="polyzero.h::zerosGeometricMean" ref="gff48f345e1c619a7fcfef4fec02674f8" args="(const Polynomial< std::complex< T > > &p)" --><p><table class="mdTable" cellpadding="2" cellspacing="0"> <tr> <td class="mdRow"> <table cellpadding="0" cellspacing="0" border="0"> <tr> <td class="mdPrefix" colspan="4">template<class T> </td> </tr> <tr> <td class="md" nowrap valign="top">T zerosGeometricMean </td> <td class="md" valign="top">( </td> <td class="md" nowrap valign="top">const <a class="el" href="a00090.html">Polynomial</a>< std::complex< T > > & </td> <td class="mdname1" valign="top" nowrap> <em>p</em> </td> <td class="md" valign="top"> ) </td> <td class="md" nowrap></td> </tr> </table> </td> </tr></table><table cellspacing="5" cellpadding="0" border="0"> <tr> <td> </td> <td><p>returns the geometric mean for zeros of a polynomial.<p>See <a class="el" href="a00099.html#ga911d353ac1900e9da22160a11d8b350">zerosGeometricMean(const Polynomial<T>& p)</a> for more details. <p>Definition at line <a class="el" href="a00108.html#l00306">306</a> of file <a class="el" href="a00108.html">polyzero.h</a>. </td> </tr></table><a class="anchor" name="ga911d353ac1900e9da22160a11d8b350"></a><!-- doxytag: member="polyzero.h::zerosGeometricMean" ref="ga911d353ac1900e9da22160a11d8b350" args="(const Polynomial< T > &p)" --><p><table class="mdTable" cellpadding="2" cellspacing="0"> <tr> <td class="mdRow"> <table cellpadding="0" cellspacing="0" border="0"> <tr> <td class="mdPrefix" colspan="4">template<class T> </td> </tr> <tr> <td class="md" nowrap valign="top">T zerosGeometricMean </td> <td class="md" valign="top">( </td> <td class="md" nowrap valign="top">const <a class="el" href="a00090.html">Polynomial</a>< T > & </td> <td class="mdname1" valign="top" nowrap> <em>p</em> </td> <td class="md" valign="top"> ) </td> <td class="md" nowrap></td> </tr> </table> </td> </tr></table><table cellspacing="5" cellpadding="0" border="0"> <tr> <td> </td> <td><p>returns the geometric mean for zeros of a polynomial.<p>Returns the geometric mean for zeros of a polynomial.<p>According to Vieta's theorem, the geometric mean <img class="formulaInl" alt="$G$" src="form_50.png"> for the zeros of a polynomial can be simplified to the result of the equation:<p><p class="formulaDsp"><img class="formulaDsp" alt="\[G_p=\left[\frac{|a_0|}{|a_n|}\right]^{\frac{1}{n}}, p(x)=a_0+a_1{x}+a_2{x^2}+...+a_n{x^n}, a_n\neq 0\]" src="form_51.png"><p><p><dl compact><dt><b>Parameters:</b></dt><dd> <table border="0" cellspacing="2" cellpadding="0"> <tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>p</em> </td><td>polynomial being evaluated. template parameter <em>T</em> can be any real or complex IEEE floating-point type.</td></tr> </table></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="a00090.html">Polynomial</a><br> <a class="el" href="a00099.html#g4c00b88d043d1f70cdcb4d2cec66b55e">cauchyLowerBound()</a> </dd></dl><p>Definition at line <a class="el" href="a00108.html#l00293">293</a> of file <a class="el" href="a00108.html">polyzero.h</a>. </td> </tr></table><hr size="1"><address style="align: right;"><small>Generated on Mon Aug 21 21:57:25 2006 for The Polynomials Templates Library by <a href="http://www.doxygen.org/index.html"><img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.4.5 </small></address></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -