⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 a00100.html

📁 This library defines basic operation on polynomials, and contains also 3 different roots (zeroes)-fi
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"><title>The Polynomials Templates Library: Polynomial evaluation functions</title><link href="doxygen.css" rel="stylesheet" type="text/css"><link href="tabs.css" rel="stylesheet" type="text/css"></head><body><!-- Generated by Doxygen 1.4.5 --><div class="tabs">  <ul>    <li><a href="index.html"><span>Main&nbsp;Page</span></a></li>    <li><a href="modules.html"><span>Modules</span></a></li>    <li><a href="annotated.html"><span>Classes</span></a></li>    <li><a href="files.html"><span>Files</span></a></li>  </ul></div><h1>Polynomial evaluation functions<br><small>[<a class="el" href="a00099.html">The Polynomial Templates</a>]</small></h1><hr><a name="_details"></a><h2>Detailed Description</h2><a class="el" href="a00090.html">Polynomial</a> evaluation functions. <p><table border="0" cellpadding="0" cellspacing="0"><tr><td></td></tr><tr><td colspan="2"><br><h2>Functions</h2></td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#gc5161c8ecd75b0108d0ea60c92d30d21">eval</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;x)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U, class V&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#g06acec12b7f66f68ea3db5838ac7e072">eval</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;x, V &amp;e)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#g0a6fc89686a91e3c8c99923a7b0247e3">evalAndDeflate</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;a, <a class="el" href="a00090.html">Polynomial</a>&lt; U &gt; &amp;q)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U, class V&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#g2fe3a1cb7b5ae7739c3f228758d9f1fd">evalAndDeflate</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;a, <a class="el" href="a00090.html">Polynomial</a>&lt; U &gt; &amp;q, V &amp;e)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#g1d2411f2d57ecde3c510c53390e4c611">evalError</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;mx)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#gc143079d7e07a2b902831ec539e45fc6">evalAndDerive</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;x, U &amp;ppx)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#gcc297191b953d7df4ecad642e13e7911">evalAndDerive</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;x, U &amp;ppx, U &amp;pppx)</td></tr><tr><td class="memTemplParams" nowrap colspan="2">template&lt;class T, class U&gt; </td></tr><tr><td class="memTemplItemLeft" nowrap align="right" valign="top">U&nbsp;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="a00100.html#g055ddecc1576e178f623b4b8e868cc23">evalDeriveAndDeflate</a> (const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;p, const U &amp;x, U &amp;ppx, U &amp;pppx, <a class="el" href="a00090.html">Polynomial</a>&lt; U &gt; &amp;q)</td></tr></table><hr><h2>Function Documentation</h2><a class="anchor" name="g06acec12b7f66f68ea3db5838ac7e072"></a><!-- doxytag: member="Polynomial.h::eval" ref="g06acec12b7f66f68ea3db5838ac7e072" args="(const Polynomial&lt; T &gt; &amp;p, const U &amp;x, V &amp;e)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="mdPrefix" colspan="4">template&lt;class T, class U, class V&gt; </td>        </tr>        <tr>          <td class="md" nowrap valign="top">U eval           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top">const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>p</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>          <td class="md"></td>          <td class="md" nowrap>const U &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>x</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>          <td class="md"></td>          <td class="md" nowrap>V &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>e</em></td>        </tr>        <tr>          <td class="md"></td>          <td class="md">)&nbsp;</td>          <td class="md" colspan="2"></td>        </tr>      </table>    </td>  </tr></table><table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>evaluates polynomial value <img class="formulaInl" alt="$y = p(x)$" src="form_20.png"> .<p>Evaluates <img class="formulaInl" alt="$p(x)$" src="form_21.png"> by Horner's recurence. This is the preferred way of evaluating polynomials, since the member function <a class="el" href="a00090.html#a845bf5cc0f93217a7c7f403a0bc9d38">Polynomial&lt;T&gt;::eval()</a> is resricted to same-type polynomial coeficients and variable <em>x</em> <p>No error checking is performed, so any validation for overflow, or underflow is the responsibility of the caller.<p><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"><tt>[in]</tt>&nbsp;</td><td valign="top"><em>p</em>&nbsp;</td><td>a polynomial. </td></tr>    <tr><td valign="top"><tt>[in]</tt>&nbsp;</td><td valign="top"><em>x</em>&nbsp;</td><td>parameter of <img class="formulaInl" alt="$p(x)$" src="form_21.png"> </td></tr>    <tr><td valign="top"><tt>[out]</tt>&nbsp;</td><td valign="top"><em>e</em>&nbsp;</td><td>round-off error to be expected in the calculation of <img class="formulaInl" alt="$p(x)$" src="form_21.png"> </td></tr>  </table></dl><dl compact><dt><b>Returns:</b></dt><dd>The value of <img class="formulaInl" alt="$p(x)$" src="form_21.png"> .</dd></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="a00100.html#gc5161c8ecd75b0108d0ea60c92d30d21">eval(const Polynomial&lt;T&gt;&amp; p, const U&amp; x)</a>\ <a class="el" href="a00090.html#a845bf5cc0f93217a7c7f403a0bc9d38">Polynomial&lt;T&gt;::eval(const T&amp; x) const</a> </dd></dl><p>Definition at line <a class="el" href="a00107.html#l00896">896</a> of file <a class="el" href="a00107.html">Polynomial.h</a>.    </td>  </tr></table><a class="anchor" name="gc5161c8ecd75b0108d0ea60c92d30d21"></a><!-- doxytag: member="Polynomial.h::eval" ref="gc5161c8ecd75b0108d0ea60c92d30d21" args="(const Polynomial&lt; T &gt; &amp;p, const U &amp;x)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="mdPrefix" colspan="4">template&lt;class T, class U&gt; </td>        </tr>        <tr>          <td class="md" nowrap valign="top">U eval           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top">const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>p</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>          <td class="md"></td>          <td class="md" nowrap>const U &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>x</em></td>        </tr>        <tr>          <td class="md"></td>          <td class="md">)&nbsp;</td>          <td class="md" colspan="2"></td>        </tr>      </table>    </td>  </tr></table><table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>evaluates polynomial value <img class="formulaInl" alt="$y = p(x)$" src="form_20.png"> .<p>Evaluates <img class="formulaInl" alt="$p(x)$" src="form_21.png"> by Horner's recurence. This is the preferred way of evaluating polynomials, since the member function <a class="el" href="a00090.html#a845bf5cc0f93217a7c7f403a0bc9d38">Polynomial&lt;T&gt;::eval()</a> is resricted to same-type polynomial coeficients and variable <em>x</em> <p>No error checking is performed, so any validation for overflow, or underflow is the responsibility of the caller.<p><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"><tt>[in]</tt>&nbsp;</td><td valign="top"><em>p</em>&nbsp;</td><td>a polynomial. </td></tr>    <tr><td valign="top"><tt>[in]</tt>&nbsp;</td><td valign="top"><em>x</em>&nbsp;</td><td>parameter of <img class="formulaInl" alt="$p(x)$" src="form_21.png"> </td></tr>  </table></dl><dl compact><dt><b>Returns:</b></dt><dd>The value of <img class="formulaInl" alt="$p(x)$" src="form_21.png"> .</dd></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="a00090.html#a845bf5cc0f93217a7c7f403a0bc9d38">Polynomial&lt;T&gt;::eval(const T&amp; x) const</a><br> <a class="el" href="a00100.html#g06acec12b7f66f68ea3db5838ac7e072">eval(const Polynomial&lt;T&gt;&amp; p, const U&amp; x, V&amp; e)</a> </dd></dl><p>Definition at line <a class="el" href="a00107.html#l00860">860</a> of file <a class="el" href="a00107.html">Polynomial.h</a>.    </td>  </tr></table><a class="anchor" name="g2fe3a1cb7b5ae7739c3f228758d9f1fd"></a><!-- doxytag: member="Polynomial.h::evalAndDeflate" ref="g2fe3a1cb7b5ae7739c3f228758d9f1fd" args="(const Polynomial&lt; T &gt; &amp;p, const U &amp;a, Polynomial&lt; U &gt; &amp;q, V &amp;e)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="mdPrefix" colspan="4">template&lt;class T, class U, class V&gt; </td>        </tr>        <tr>          <td class="md" nowrap valign="top">U evalAndDeflate           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top">const <a class="el" href="a00090.html">Polynomial</a>&lt; T &gt; &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>p</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>          <td class="md"></td>          <td class="md" nowrap>const U &amp;&nbsp;</td>          <td class="mdname" nowrap> <em>a</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -