⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 a00106.html

📁 This library defines basic operation on polynomials, and contains also 3 different roots (zeroes)-fi
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"><title>The Polynomials Templates Library: muller.h Source File</title><link href="doxygen.css" rel="stylesheet" type="text/css"><link href="tabs.css" rel="stylesheet" type="text/css"></head><body><!-- Generated by Doxygen 1.4.5 --><div class="tabs">  <ul>    <li><a href="index.html"><span>Main&nbsp;Page</span></a></li>    <li><a href="modules.html"><span>Modules</span></a></li>    <li><a href="annotated.html"><span>Classes</span></a></li>    <li id="current"><a href="files.html"><span>Files</span></a></li>  </ul></div><div class="tabs">  <ul>    <li><a href="files.html"><span>File&nbsp;List</span></a></li>    <li><a href="globals.html"><span>File&nbsp;Members</span></a></li>  </ul></div><h1>muller.h</h1><a href="a00095.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 <span class="preprocessor">#ifndef MULLER_H</span><a name="l00002"></a>00002 <span class="preprocessor"></span><span class="preprocessor">#define MULLER_H</span><a name="l00003"></a>00003 <span class="preprocessor"></span><a name="l00029"></a>00029 <span class="preprocessor">#include "<a class="code" href="a00097.html">polyzero.h</a>"</span><a name="l00030"></a>00030 <a name="l00054"></a>00054 <span class="keyword">template</span> &lt; <span class="keyword">class</span> T, <span class="keyword">class</span> U &gt;<a name="l00055"></a><a class="code" href="a00102.html#g255f8995a5a65456d0ac4b99a1d60325">00055</a> <span class="keywordtype">int</span> <a class="code" href="a00102.html#g255f8995a5a65456d0ac4b99a1d60325">mullerZeros</a>(<span class="keyword">const</span> Polynomial &lt; T &gt; &amp; P,<a name="l00056"></a>00056                 std::vector &lt; std::complex &lt; U &gt; &gt; &amp; zeros,<a name="l00057"></a>00057                 <span class="keywordtype">bool</span> polish)<a name="l00058"></a>00058 {<a name="l00059"></a>00059 <a name="l00060"></a>00060     <span class="keyword">typedef</span> U Float;<a name="l00061"></a>00061     <span class="keyword">typedef</span> std::complex &lt; Float &gt; Complex;<a name="l00062"></a>00062     <span class="keyword">typedef</span> Polynomial &lt; Complex &gt; ComplexPolynomial;<a name="l00063"></a>00063     <span class="keyword">typedef</span> Polynomial &lt; Float &gt; FloatPolynomial;<a name="l00064"></a>00064 <a name="l00065"></a>00065     <span class="keyword">const</span> <span class="keywordtype">bool</span> ADAPTIVE = <span class="keyword">false</span>;<a name="l00066"></a>00066     <span class="keyword">static</span> FloatSpecs &lt; Float &gt; fpSpecs;<a name="l00067"></a>00067     <span class="keyword">const</span> <span class="keywordtype">int</span> MAXIT          = 128;<a name="l00068"></a>00068     <span class="keyword">static</span> <span class="keyword">const</span> Float SHIFT = acos(Float(-1)) * Float(7 / 180.);<a name="l00069"></a>00069     <span class="keyword">const</span> Float GROW         = Float(1.05);<a name="l00070"></a>00070 <a name="l00071"></a>00071     Polynomial &lt; T &gt; p = P, f;<a name="l00072"></a>00072     ComplexPolynomial q, q2;<a name="l00073"></a>00073     FloatPolynomial mp;<a name="l00074"></a>00074 <a name="l00075"></a>00075     Complex z0, zx, z, z1, z2, pz, pz1, pz2, bestZ, zE, shift;<a name="l00076"></a>00076     Complex h, h1, h2, d, d1, d2, ac, sq, b, D, E, x, sm, df, px;<a name="l00077"></a>00077     Float e, a = 0, da = 1, r, mpz, mpx, g;<a name="l00078"></a>00078     <span class="keywordtype">int</span> i, j = 0, conv = 0, n;<a name="l00079"></a>00079     <span class="keywordtype">bool</span> started;<a name="l00080"></a>00080 <a name="l00081"></a>00081     zeros.clear();<a name="l00082"></a>00082 <a name="l00083"></a>00083     <a class="code" href="a00099.html#g1ca5c1a34fcdcadb083a25ecf0e1a995">modulus</a>(p, mp);<a name="l00084"></a>00084     <a class="code" href="a00099.html#g663581aef6853ed86df03a35505c9ebd">scalePoly</a>(p, mp);<a name="l00085"></a>00085     f = p;<a name="l00086"></a>00086     i = <a class="code" href="a00102.html#g206394af98d861f1a81bea25ae6d84da">removeNullZeros</a>(p);<a name="l00087"></a>00087     zeros.assign(i, Complex(0));<a name="l00088"></a>00088 <a name="l00089"></a>00089     <span class="keywordflow">while</span> (p.<a class="code" href="a00090.html#b433e0edb11b32a205a9d07b89aefa8f">degree</a>() &gt; 0) {<a name="l00090"></a>00090 <a name="l00091"></a>00091         <span class="keywordflow">if</span> (p.<a class="code" href="a00090.html#b433e0edb11b32a205a9d07b89aefa8f">degree</a>() == 1) {<a name="l00092"></a>00092             z = <a class="code" href="a00102.html#g6e9fe1cec8c7ec334d9e21f31b602bde">solveDegree1</a>(p[1], p[0]);<a name="l00093"></a>00093             zeros.push_back(z);<a name="l00094"></a>00094             <span class="keywordflow">break</span>;<a name="l00095"></a>00095         }<a name="l00096"></a>00096         <span class="keywordflow">if</span> (p.degree() == 2) {<a name="l00097"></a>00097             <a class="code" href="a00102.html#gb88e92200690d2e3f8b0c785c8fa42d3">solveDegree2</a>(p[2], p[1], p[0], z, z1);<a name="l00098"></a>00098             <span class="keywordflow">if</span> (polish) {<a name="l00099"></a>00099                 <a class="code" href="a00102.html#g7528de40f73b280a95202bc5b8947424">newtonZero</a>(P, z, pz, mpz, ADAPTIVE);<a name="l00100"></a>00100                 <a class="code" href="a00102.html#g7528de40f73b280a95202bc5b8947424">newtonZero</a>(P, z1, pz, mpz, ADAPTIVE);<a name="l00101"></a>00101             }<a name="l00102"></a>00102             zeros.push_back(z);<a name="l00103"></a>00103             zeros.push_back(z1);<a name="l00104"></a>00104             <span class="keywordflow">break</span>;<a name="l00105"></a>00105         }<a name="l00106"></a>00106 <a name="l00107"></a>00107         <a class="code" href="a00099.html#g1ca5c1a34fcdcadb083a25ecf0e1a995">modulus</a>(p, mp);<a name="l00108"></a>00108         mp[0] = -mp[0];<a name="l00109"></a>00109         Float c = <a class="code" href="a00099.html#g4c00b88d043d1f70cdcb4d2cec66b55e">cauchyLowerBound</a>(mp, Float(0));<a name="l00110"></a>00110         r = c;<a name="l00111"></a>00111         g = <a class="code" href="a00099.html#ga911d353ac1900e9da22160a11d8b350">zerosGeometricMean</a>(p);<a name="l00112"></a>00112         g = (g - c) / MAXIT;<a name="l00113"></a>00113         <span class="keywordflow">for</span> (i = 1; i &lt;= MAXIT; ++i) {<a name="l00114"></a>00114 <a name="l00115"></a>00115             shift = exp(Complex(0, a));<a name="l00116"></a>00116             z2 = Complex(0, -r) * shift;<a name="l00117"></a>00117             z1 = 0;<a name="l00118"></a>00118             z = (r) * shift;<a name="l00119"></a>00119             pz = <a class="code" href="a00100.html#gc5161c8ecd75b0108d0ea60c92d30d21">eval</a>(p, z);<a name="l00120"></a>00120             pz1 = <a class="code" href="a00100.html#gc5161c8ecd75b0108d0ea60c92d30d21">eval</a>(p, z1);<a name="l00121"></a>00121             pz2 = <a class="code" href="a00100.html#gc5161c8ecd75b0108d0ea60c92d30d21">eval</a>(p, z2);<a name="l00122"></a>00122             <span class="keywordflow">if</span> (abs(pz2) &lt; abs(pz)) {<a name="l00123"></a>00123                 std::swap(pz, pz2);<a name="l00124"></a>00124                 std::swap(z, z2);<a name="l00125"></a>00125             }<a name="l00126"></a>00126 <a name="l00127"></a>00127             a += SHIFT;<a name="l00128"></a>00128             r += g;<a name="l00129"></a>00129 <a name="l00130"></a>00130             e = abs(pz) * (1 + fpSpecs.MRE), mpx, mpz;<a name="l00131"></a>00131             started = <span class="keyword">false</span>;<a name="l00132"></a>00132 <a name="l00133"></a>00133             h1 = z1 - z2;<a name="l00134"></a>00134             h2 = z - z1;<a name="l00135"></a>00135 <a name="l00136"></a>00136             <span class="keywordflow">if</span> (h1 == Complex(0) &amp;&amp; h2 == Complex(0) || (h1 + h2) == Complex(0))<a name="l00137"></a>00137                 <span class="keywordflow">continue</span>;<a name="l00138"></a>00138             d1 = (pz1 - pz2) / h1;<a name="l00139"></a>00139             d2 = (pz - pz1) / h2;<a name="l00140"></a>00140             d = (d2 - d1) / (h2 + h1);<a name="l00141"></a>00141 <a name="l00142"></a>00142             px = pz;<a name="l00143"></a>00143             mpx = mpz = abs(pz);<a name="l00144"></a>00144 <a name="l00145"></a>00145             j = 0;<a name="l00146"></a>00146             conv = 0;<a name="l00147"></a>00147             <span class="keywordflow">while</span> (1) {<a name="l00148"></a>00148                 <span class="keywordflow">if</span> (++j &gt; 3)<a name="l00149"></a>00149                     started = <span class="keyword">true</span>;<a name="l00150"></a>00150 <a name="l00151"></a>00151                 <span class="keywordflow">if</span> (!started || conv == 0) {<a name="l00152"></a>00152                     b = d2 + (h2 * d);<a name="l00153"></a>00153                     ac = pz * d;<a name="l00154"></a>00154                     ac = ac + ac;<a name="l00155"></a>00155                     ac = ac + ac;<a name="l00156"></a>00156                     D = sqrt((b * b) - ac);<a name="l00157"></a>00157 <a name="l00158"></a>00158                     sm = b + D;<a name="l00159"></a>00159                     df = b - D;<a name="l00160"></a>00160                     E = (abs(df) &gt; abs(sm)) ? df : sm;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -