📄 tfrcw.m
字号:
function [tfr,t,f] = tfrcw(x,t,N,g,h,sigma,trace);%TFRCW Choi-Williams time-frequency distribution.% [TFR,T,F]=TFRCW(X,T,N,G,H,SIGMA,TRACE) computes the Choi-Williams % distribution of a discrete-time signal X, or the% cross Choi-Williams representation between two signals. % % X : signal if auto-CW, or [X1,X2] if cross-CW.% T : time instant(s) (default : 1:length(X)).% N : number of frequency bins (default : length(X)).% G : time smoothing window, G(0) being forced to 1. % (default : Hamming(N/10)).% H : frequency smoothing window, H(0) being forced to 1.% (default : Hamming(N/4)). % SIGMA : kernel width (default : 1)% TRACE : if nonzero, the progression of the algorithm is shown% (default : 0).% TFR : time-frequency representation. When called without % output arguments, TFRCW runs TFRQVIEW.% F : vector of normalized frequencies.%% Example:% sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4); % g=tftb_window(9,'Kaiser'); h=tftb_window(27,'Kaiser'); % t=1:128; tfrcw(sig,t,128,g,h,3.6,1);% % See also all the time-frequency representations listed in% the file CONTENTS (TFR*)% F. Auger, May-August 1994, July 1995.% Copyright (c) 1996 by CNRS (France).%% ------------------- CONFIDENTIAL PROGRAM -------------------- % This program can not be used without the authorization of its% author(s). For any comment or bug report, please send e-mail to % f.auger@ieee.orgif (nargin == 0), error('At least 1 parameter required');end;[xrow,xcol] = size(x);if (xcol==0)|(xcol>2), error('X must have one or two columns');endif (nargin <= 2), N=xrow;elseif (N<0), error('N must be greater than zero');elseif (2^nextpow2(N)~=N), fprintf('For a faster computation, N should be a power of two\n');end;hlength=floor(N/4); hlength=hlength+1-rem(hlength,2); glength=floor(N/10);glength=glength+1-rem(glength,2);if (nargin == 1), t=1:xrow; g = tftb_window(glength); h = tftb_window(hlength); sigma = 1.0; trace = 0;elseif (nargin == 2)|(nargin == 3), g = tftb_window(glength); h = tftb_window(hlength); sigma = 1.0; trace = 0;elseif (nargin == 4), h = tftb_window(hlength); sigma = 1.0; trace = 0;elseif (nargin == 5), sigma = 1.0; trace = 0;elseif (nargin == 6), trace = 0;end;[trow,tcol] = size(t);if (trow~=1), error('T must only have one row'); end; [grow,gcol]=size(g); Lg=(grow-1)/2;if (gcol~=1)|(rem(grow,2)==0), error('G must be a smoothing window with odd length'); end;[hrow,hcol]=size(h); Lh=(hrow-1)/2; h=h/h(Lh+1);if (hcol~=1)|(rem(hrow,2)==0), error('H must be a smoothing window with odd length');end;if (sigma<=0.0), error('SIGMA must be strictly positive'); end;normfac = 16.0*pi/sigma; spreadfac = 16.0/sigma;taumax = min([round(N/2),Lh]); tau = 1:taumax; points = -Lg:Lg;CWKer = exp(-kron( points.' .^2, 1.0 ./ (spreadfac*tau.^2)));CWKer = diag(g) * CWKer;tfr= zeros (N,tcol) ; if trace, disp('Choi-Williams distribution'); end;for icol=1:tcol, ti= t(icol); taumax=min([ti+Lg-1,xrow-ti+Lg,round(N/2)-1,Lh]); if trace, disprog(icol,tcol,10); end; tfr(1,icol)= x(ti,1) .* conj(x(ti,xcol)); for tau=1:taumax, points= -min([Lg,xrow-ti-tau]):min([Lg,ti-tau-1]); g2 = CWKer(Lg+1+points,tau); g2=g2/sum(g2); R=sum(g2 .* x(ti+tau-points,1) .* conj(x(ti-tau-points,xcol))); tfr( 1+tau,icol)=h(Lh+tau+1)*R; R=sum(g2 .* x(ti-tau-points,1) .* conj(x(ti+tau-points,xcol))); tfr(N+1-tau,icol)=h(Lh-tau+1)*R; end; tau=round(N/2); if (ti<=xrow-tau)&(ti>=tau+1)&(tau<=Lh), points= -min([Lg,xrow-ti-tau]):min([Lg,ti-tau-1]); g2 = CWKer(Lg+1+points,tau); g2=g2/sum(g2); tfr(tau+1,icol) = 0.5 * ... (h(Lh+tau+1)*sum(g2 .* x(ti+tau-points,1) .* conj(x(ti-tau-points,xcol)))+... h(Lh-tau+1)*sum(g2 .* x(ti-tau-points,1) .* conj(x(ti+tau-points,xcol)))); end;end; clear CWKer;if trace, fprintf('\n'); end;tfr= fft(tfr); if (xcol==1), tfr=real(tfr); end ;if (nargout==0), tfrqview(tfr,x,t,'tfrcw',g,h,sigma);elseif (nargout==3), f=(0.5*(0:N-1)/N)';end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -