📄 rxy_uniform.m
字号:
function result = Rxy_uniform(d_norm,phi_0_deg,AS_deg)
% result = Rxy_uniform(d_norm,phi_0_deg,AS_deg)
%
% Computes the correlation of the real and imaginary parts of the
% signals in the case of a uniform Power Azimuth Spectrum (PAS) at
% spacings given by d_norm. The PAS is characterised by the Angle
% Of Arrival (AOA) phi_0_deg and by its Azimuth Spread (AS) AS_deg.
%
%
% STANDARD DISCLAIMER
%
% CSys is furnishing this item "as is". CSys does not provide any
% warranty of the item whatsoever, whether express, implied, or
% statutory, including, but not limited to, any warranty of
% merchantability or fitness for a particular purpose or any
% warranty that the contents of the item will be error-free.
%
% In no respect shall CSys incur any liability for any damages,
% including, but limited to, direct, indirect, special, or
% consequential damages arising out of, resulting from, or any way
% connected to the use of the item, whether or not based upon
% warranty, contract, tort, or otherwise; whether or not injury was
% sustained by persons or property or otherwise; and whether or not
% loss was sustained from, or arose out of, the results of, the
% item, or any services that may be provided by CSys.
%
% (c) Laurent Schumacher, AAU-TKN/IES/KOM/CPK/CSys - July 2001
D = 2.*pi.*d_norm;
% Conversion degree -> radian
phi_0_rad = phi_0_deg*(pi/180);
AS_rad = AS_deg*(pi/180);
% Relation between AS and limits phi_0 +/- delta_phi
delta_phi_uniform_rad = AS_rad*sqrt(3);
m = 0;
result = 4.*besselj(1,D).*sin(phi_0_rad).* ...
sin(delta_phi_uniform_rad)./delta_phi_uniform_rad;
tmp_xy_uniform = ones(size(D));
while (m < 100)
m = m + 1;
tmp_xy_uniform = 4.*besselj((2*m)+1,D).*sin(((2*m)+1)* ...
phi_0_rad).* ...
sin(((2*m)+1)*delta_phi_uniform_rad)./((2*m)+1);
result = result + tmp_xy_uniform;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -