📄 periph.bak
字号:
#pragma NOIV // Do not generate interrupt vectors
//-----------------------------------------------------------------------------
// File: periph.c
// Contents: Hooks required to implement USB peripheral function.
//
// Copyright (c) 1997 AnchorChips, Inc. All rights reserved
// Adapted for use with HIDs by Jan Axelson (jan@lvr.com)
//-----------------------------------------------------------------------------
#include <ezusb.h>
#include <ezregs.h>
#include <intrins.h>
#include <fx.h>
extern BOOL GotSUD; // Received setup data flag
extern BOOL Sleep;
extern BOOL Rwuen;
extern BOOL Selfpwr;
//+++++++++++++++++
#define P0 OUTA
#define P1 OUTB
#define P2 OUTD
//+++++++++++++++++
BYTE Configuration; // Current configuration
BYTE AlternateSetting; // Alternate settings
BYTE suspCount;
// HID code start
BYTE InReportBytes;
void *dscr_ptr;
// HID code end
//-----------------------------------------------------------------------------
// Task Dispatcher hooks
// The following hooks are called by the task dispatcher.
//-----------------------------------------------------------------------------
void TD_Init(void) // Called once at startup
{
// Enable endpoints 0-7 IN and OUT
//IN07VAL |= bmEP1 + bmEP2 + bmEP3 + bmEP4 + bmEP5 + bmEP6 + bmEP7;
//OUT07VAL |= bmEP1 + bmEP2 + bmEP3 + bmEP4 + bmEP5 + bmEP6 + bmEP7;
//HID code start
//Comment out the above two lines and enable only the endpoints used by the HID interface.
PORTACFG = 0x00;
OEA = 0xFF;
//P0 = 0x01;
PORTBCFG = 0x00;
OEB = 0xFF;
//P1 = 0xFF;
PORTDCFG = 0x00;
//SCON0 = 0x00;
OED = 0xFF;
//P2 = 0xFF;
IN07VAL |= bmEP1 ;
OUT07VAL |= bmEP2;
//HID code end
// Enable interrupts for the OUT endpoints
// OUT07IEN |= bmEP1 + bmEP2 + bmEP3 + bmEP4 + bmEP5 + bmEP6 + bmEP7;
//HID code start
//Comment out the above line and enable interrupts for the endpoints used by the HID interface.
// Enable interrrupts for Endpoint 2 OUT
OUT07IEN |= bmEP2;
// Enable interrupts for Endpoint 1 IN
IN07IEN |= bmEP1;
//HID code end
suspCount = 1;
OEA = 0xFF;
Rwuen = TRUE; // Enable remote-wakeup
}
void TD_Poll(void) // Called repeatedly while the device is idle
{
}
BOOL TD_Suspend(void) // Called before the device goes into suspend mode
{
return(TRUE);
}
BOOL TD_Resume(void) // Called after the device resumes
{
return(TRUE);
}
//-----------------------------------------------------------------------------
// Device Request hooks
// The following hooks are called by the end point 0 device request parser.
//-----------------------------------------------------------------------------
BOOL DR_GetDescriptor(void)
{
return(TRUE);
}
BOOL DR_SetConfiguration(void) // Called when a Set Configuration command is received
{
Configuration = SETUPDAT[2];
return(TRUE); // Handled by user code
}
BOOL DR_GetConfiguration(void) // Called when a Get Configuration command is received
{
IN0BUF[0] = Configuration;
EZUSB_SET_EP_BYTES(IN0BUF_ID,1);
return(TRUE); // Handled by user code
}
BOOL DR_SetInterface(void) // Called when a Set Interface command is received
{
AlternateSetting = SETUPDAT[2];
return(TRUE); // Handled by user code
}
BOOL DR_GetInterface(void) // Called when a Set Interface command is received
{
IN0BUF[0] = AlternateSetting;
EZUSB_SET_EP_BYTES(IN0BUF_ID,1);
return(TRUE); // Handled by user code
}
BOOL DR_GetStatus(void)
{
return(TRUE);
}
BOOL DR_ClearFeature(void)
{
return(TRUE);
}
BOOL DR_SetFeature(void)
{
return(TRUE);
}
#define EZUSB_UNARM_EP(ep_id) EPIO[ep_id].cntrl = bmEPBUSY
BOOL DR_VendorCmnd(void)
{
return(TRUE);
}
//-----------------------------------------------------------------------------
// USB Interrupt Handlers
// The following functions are called by the USB interrupt jump table.
//-----------------------------------------------------------------------------
// Setup Data Available Interrupt Handler
void ISR_Sudav(void) interrupt 0
{
GotSUD = TRUE; // Set flag
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUDAV; // Clear SUDAV IRQ
}
// Setup Token Interrupt Handler
void ISR_Sutok(void) interrupt 0
{
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUTOK; // Clear SUTOK IRQ
}
void ISR_Sof(void) interrupt 0
{
EZUSB_IRQ_CLEAR();
USBIRQ = bmSOF; // Clear SOF IRQ
}
void ISR_Ures(void) interrupt 0
{
// Arm all of the OUT endpoints so they can accept data
// EPIO[OUT1BUF_ID].bytes = 0;
// HID code start
// Arm the HID endpoints by loading the byte count registers.
// Get the number of bytes the In report will send.
// This information is in Report Count in the report descriptor,
// and in Report_Count_In_Value in the REPORTDSCR structure.
// (Assumes that ReportSize (specified in the report descriptor) = 8).
// To do: calculate the number of bytes to send for reports with any ReportSize.
REPORTDSCR *rdp;
dscr_ptr = (REPORTDSCR xdata *) pReportDscr;
rdp = dscr_ptr;
InReportBytes = rdp -> Report_Count_In_Value;
EPIO[IN1BUF_ID].bytes = InReportBytes;
// The value for Out reports can be anything.
EPIO[OUT2BUF_ID].bytes = 64;
// HID code end
// EPIO[OUT3BUF_ID].bytes = 0;
// EPIO[OUT4BUF_ID].bytes = 0;
// EPIO[OUT5BUF_ID].bytes = 0;
// EPIO[OUT6BUF_ID].bytes = 0;
// EPIO[OUT7BUF_ID].bytes = 0;
EZUSB_IRQ_CLEAR();
USBIRQ = bmURES; // Clear URES IRQ
}
void ISR_IBN(void) interrupt 0
{
// ISR for the IN Bulk NAK (IBN) interrupt.
}
void ISR_Susp(void) interrupt 0
{
Sleep = TRUE;
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUSP;
}
void ISR_Ep0in(void) interrupt 0
{
}
void ISR_Ep0out(void) interrupt 0
{
}
void ISR_Ep1in(void) interrupt 0
{
// HID code start
//This is the only In endpoint used by the HID interface.
// When an IN transfer completes, rearm the endpoint.
IN1BC = InReportBytes;
// clear the IRQ
EZUSB_IRQ_CLEAR();
IN07IRQ = bmEP1;
//HID code end
}
void ISR_Ep1out(void) interrupt 0
{
int i;
//
// workaround to cover the case where the host thinks the
// previous IN completed but EZ-USB didn't receive a valid
// handshake (i.e. the ACK was scrambled). If we have
// received new OUT data (which we have, because we're in this
// ISR) but the corresponding IN endpoint is still busy, then
// we know we missed the handshake. The solution is to flip
// the data toggle and proceed with the new data.
//
if (EPIO[IN1BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN1BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT1BC; i++)
{
IN1BUF[i] = ~OUT1BUF[i];
P0=OUT07IEN;
}
// Arm the IN endpoint
IN1BC = i;
// Arm the OUT so it can receive the next packet
OUT1BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP1;
}
void ISR_Ep2in(void) interrupt 0
{
}
void ISR_Ep2out(void) interrupt 0
//HID code start
//This is the only Out endpoint used by the HID interface.
//Changed IN2 to IN1 in this routine
{
int i;
if (EPIO[IN1BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN1BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT2BC; i++)
{
// Send the complement of the received data back to the host.
// IN1BUF[i] = ~OUT2BUF[i];
P0=OUT2BUF[0];
P1=OUT2BUF[1]; //-------------------------------------------------
P2=OUT2BUF[2];
//IN1BUF[0]=P0;
}
// Arm the IN endpoint
// I commented this line out and instead re-armed endpoint 1 after each In transfer
// in the In endpoint's ISR.
// This enables the host software to do In transfers only if desired.
//IN1BC = i;
// Arm the OUT endpoint so it can receive the next packet. (Write any value.)
OUT2BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP2;
}
void ISR_Ep3in(void) interrupt 0
{
}
void ISR_Ep3out(void) interrupt 0
{
int i;
if (EPIO[IN3BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN3BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT3BC; i++)
{
IN3BUF[i] = ~OUT3BUF[i];
}
// Arm the IN endpoint
IN3BC = i;
// Arm the OUT so it can receive the next packet
OUT3BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP3;
}
void ISR_Ep4in(void) interrupt 0
{
}
void ISR_Ep4out(void) interrupt 0
{
int i;
if (EPIO[IN4BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN4BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT4BC; i++)
{
IN4BUF[i] = ~OUT4BUF[i];
}
// Arm the IN endpoint
IN4BC = i;
// Arm the OUT so it can receive the next packet
OUT4BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP4;
}
void ISR_Ep5in(void) interrupt 0
{
}
void ISR_Ep5out(void) interrupt 0
{
int i;
if (EPIO[IN5BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN5BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT5BC; i++)
{
IN5BUF[i] = ~OUT5BUF[i];
}
// Arm the IN endpoint
IN5BC = i;
// Arm the OUT so it can receive the next packet
OUT5BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP5;
}
void ISR_Ep6in(void) interrupt 0
{
}
void ISR_Ep6out(void) interrupt 0
{
int i;
if (EPIO[IN6BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN6BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT6BC; i++)
{
IN6BUF[i] = ~OUT6BUF[i];
}
// Arm the IN endpoint
IN6BC = i;
// Arm the OUT so it can receive the next packet
OUT6BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP6;
}
void ISR_Ep7in(void) interrupt 0
{
}
void ISR_Ep7out(void) interrupt 0
{
int i;
if (EPIO[IN7BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN7BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT7BC; i++)
{
IN7BUF[i] = ~OUT7BUF[i];
}
// // BUGBUG If 63 bytes was written, inject an error
// if (OUT7BC == 63)
// {
// IN7BUF[3] = IN7BUF[4];
// }
// Arm the IN endpoint
IN7BC = i;
// Arm the OUT so it can receive the next packet
OUT7BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP7;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -