📄 routines.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Kohonen and CPANN toolbox</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="HAPedit 3.0">
<link href = "style_structure.css" rel="stylesheet" type="text/css">
<link href = "style_text.css" rel="stylesheet" type="text/css">
<link href = "style_tables.css" rel="stylesheet" type="text/css">
</head>
<body>
<div id="container">
<a name="top"></a>
<div id="header">
<iframe src="header.htm" width="740" height="60" scrolling="no" frameborder="0">
no i_frames allowed :: change browser
</iframe>
</div>
<div id="content">
<table width="740" border="0" cellpadding="0" cellspacing="0">
<tr>
<td width="150" valign="top">
<iframe src="menu_lateral.htm" width="135" height="268" scrolling="no" frameborder="0">
no i_frames allowed :: change browser
</iframe>
</td>
<td valign="top">
<div align="justify">
<div id="tab_duo_contenitor" class="text">
<span class="title_page">Matlab routines</span>
<BR>
<BR>
<div id="tab_duo_text">
<div id="tab_space_lateral"><a href="#sub_1" class="lnk_text">som_settings</a></div>
<div id="tab_space_lateral"><a href="#sub_2" class="lnk_text">model_kohonen</a></div>
<div id="tab_space_lateral"><a href="#sub_3" class="lnk_text">model_cpann</a></div>
<div id="tab_space_lateral"><a href="#sub_4" class="lnk_text">pred_kohonen</a></div>
<div id="tab_space_lateral"><a href="#sub_5" class="lnk_text">pred_cpann</a></div>
<div id="tab_space_lateral"><a href="#sub_6" class="lnk_text">cv_cpann</a></div>
<div id="tab_space_lateral"><a href="#sub_7" class="lnk_text">visualize_model</a></div>
</div>
<BR><a name="sub_1"></a>
<BR>
This is a list of the main MATLAB routines you can use to develop Kohonen and CPANNs models<BR><BR>
<span class="title_paragraph">_ som_settings</span>
<BR>
<BR>
default <a href="start.htm" class="lnk_text">setting structure</a> for Kohonen maps and counterpropagation artificial neural networks (CPANNs); som_settings build a default structure with all the parameter needed to
perform Kohonen maps and CPANNs
<BR>
<BR>
<strong>settings = som_settings(type);</strong><BR>
<BR>type "help som_settings" on the MATLAB command window for further informations
<BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>]
<BR>
<BR> <a name="sub_2"></a>
<BR>
<span class="title_paragraph">_ model_kohonen</span>
<BR>
<BR>
Kohonen maps;
model_kohonen builds <a href="kohonen.htm" class="lnk_text">Kohonen maps</a> (self organising maps, SOM)<br>
<br>
<strong>model = model_kohonen(X,settings);</strong><br>
<BR>
type "help model_kohonen" on the MATLAB command window for further informations <BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>]
<BR>
<BR> <a name="sub_3"></a>
<BR>
<span class="title_paragraph">_ model_cpann</span>
<BR>
<BR>
Counterpropagation Artificial Neural Networks (CPANNs);
model_cpann builds a classification model based on <a href="cpann.htm" class="lnk_text">CPANNs</a><br>
<strong><br>
model = model_cpann(X,class,settings);</strong><br>
<br>
type "help model_cpann" on the MATLAB command window for further informations <BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>]
<BR>
<BR> <a name="sub_4"></a>
<BR>
<span class="title_paragraph">_ pred_kohonen</span>
<BR>
<BR>
prediction of unknown samples with <a href="kohonen.htm" class="lnk_text">Kohonen maps</a>;
pred_kohonen projects new samples by using a previuos model
built by means of Kohonen maps (model_kohonen)<br>
<br>
<strong>pred = pred_kohonen(X,model);</strong><br>
<br>
type "help pred_kohonen" on the MATLAB command window for further informations<BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>]
<BR>
<BR> <a name="sub_5"></a>
<BR>
<span class="title_paragraph">_ pred_cpann</span>
<BR>
<BR>
prediction of unknown samples with counterpropagation artificial neural networks (<a href="cpann.htm" class="lnk_text">CPANNs</a>);
pred_cpann predicts classes of unknown samples by using a previuos model built by means of CPANNs (model_cpann)<br>
<br>
<strong>pred = pred_cpann(X,model);</strong><br>
<br>
type "help pred_cpann" on the MATLAB command window for further informations<BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>]
<BR>
<BR> <a name="sub_6"></a>
<BR>
<span class="title_paragraph">_ cv_cpann</span>
<BR>
<BR>
cross validation for Counterpropagation Artificial Neural Networks (<a href="cpann.htm" class="lnk_text">CPANNs</a>); cross validation is perfomred with venetian blinds, i.e. with 3 cv groups
the split of the first group will be [1,0,0,1,0,0,....,1,0,0] and so on.<br>
<br>
<strong>cv = cv_cpann(X,class,settings,cv_groups);</strong><br>
<br>
type "help cv_cpann" on the MATLAB command window for further informations<BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>]
<BR>
<BR> <a name="sub_7"></a>
<BR>
<span class="title_paragraph">_ visualize_model</span>
<BR>
<BR>
visualisation of the <a href="kohonen.htm" class="lnk_text">Kohonen map</a> or <a href="cpann.htm" class="lnk_text">CPANNs</a> results;
visualize_model opens a GUI figure for exploring the results<br>
<br>
<strong>visualize_model(model,labels);</strong><br>
<br>
type "help visualize_model" on the MATLAB command window for further informations<BR>
<BR>
[<a href="#top" class="lnk_text">-> top</a>] <BR>
<BR>
<BR>
</div>
</div></td>
</tr>
</table>
</div>
<div id="footer">
<iframe src="footer.htm" width="700" height="13" scrolling="no" frameborder="0">
no i_frames allowed :: change browser
</iframe>
</div>
</div>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -