⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 molmap_modeling.htm

📁 MOLMAP multiway toolbox是一个matlab集成工具箱
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>MOLMAP multiway toolbox</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="HAPedit 3.0">

<link href = "style_structure.css" rel="stylesheet" type="text/css">
<link href = "style_text.css" rel="stylesheet" type="text/css">
<link href = "style_tables.css" rel="stylesheet" type="text/css">

<style type="text/css">
<!--
.style1 {
	color: #FF0000;
	font-weight: bold;
}
-->
</style>
</head>
<body>
<div id="container">
<a name="top"></a>

    <div id="header">
		<iframe src="header.htm" width="740" height="60" scrolling="no" frameborder="0">
  			no i_frames allowed :: change browser
	  	</iframe>
    </div>

    <div id="content">

		<table width="740" border="0" cellpadding="0" cellspacing="0">
  		<tr>
		<td width="150" valign="top">
		
		<iframe src="menu_lateral.htm" width="135" height="268" scrolling="no" frameborder="0">
  			no i_frames allowed :: change browser
	  	</iframe>
		
		</td>

    	<td valign="top">

		  <div align="justify">
		    <div id="tab_duo_contenitor" class="text">
		    <span class="title_page">MOLMAP modeling</span>		
		    <BR>
		    <BR>
    
		<div id="tab_duo_text">
		      <div id="tab_space_lateral"><a href="#sub_1" class="lnk_text">Starting the model</a></div>
		      <div id="tab_space_lateral"><a href="#sub_2" class="lnk_text">How to read the results</a></div>
		      <div id="tab_space_lateral"><a href="#sub_3" class="lnk_text">How to plot the results</a></div>
		      <div id="tab_space_lateral"><a href="#sub_4" class="lnk_text">Prediction of new samples</a></div>
	   	</div>
    
		<BR><a name="sub_1"></a>
		    <BR>
		    
		<span class="title_paragraph">_ Starting the model</span>
		    <BR>
		    <BR>
		    Once <a href="start.htm#sub_1" class="lnk_text">data</a> have been prepeared and <a href="start.htm#sub_2" class="lnk_text">settings</a> have been defined, you can calculate MOLMAP scores  by typing the following code in the MATLAB command window:
			<BR>
		    <BR>
			
			<div id="tab_duo_text" class="text_math">
				model = model_multiway(X,settings);
  	        </div>
			<BR>

		    where X is the <a href="start.htm#sub_1" class="lnk_text">three-way data matrix</a> (with dimension [IxJxK]) and settings is the <a href="start.htm#sub_2" class="lnk_text">setting structure</a>. Depending on the size and epochs used to train the model, MATLAB could take some minutes to calculate it. Anyway, in the MATLAB command window the number of processed epochs will be displayed.<BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]
		    <BR>
		    <BR> <a name="sub_2"></a>
		    <BR>
		    
		<span class="title_paragraph">_ How to read the results</span>
		    <BR>
		    <BR>
		    The given output (model) is a structure, with several fields containing all the results.

			<BR>
			<BR>         
			<B>model.net.W</B><BR>
			contains the kohonen weights with dimension [size x size x K]

			<BR>
			<BR>         
			<B>model.net.settings</B><BR>
			contains the used settings (epochs, size, etc...)

			<BR><BR>         
			<B>model.scal</B><BR>
			is a structure containing all the scaling parameters (minimum and maximum)

			<BR>
			<BR>
			<strong>model.res.score</strong>			<BR>
			contains the calculated <span class="style1">MOLMAP scores</span>, with dimensions [I x size*size]. <span class="style1">This is the score matrix you can use to build a subsequent classification model</span>.<BR>
			<BR>         
			<B>model.res.top_map</B><BR>
			contains the input vector positions (coordinates) in the Kohonen Map, with dimensions [I*J x 2]. The top map coordinates are coded in the following way:
		    <BR>
		    <BR>
			<center><img src="kohonen_top_map.gif" width="393" height="311" border="1"></center>
		    <BR>
			where, for example, the red point represents a generic input vector placed in the neuron with coordinates [3,2];
		    <BR>
			<BR>
<strong>model.label</strong><BR>
contains the input vector labels that will be used to display the results (see below) <BR>
<BR>
			<B>model.label.label_sample</B><BR>
			contains the input-vector labels on the basis of original multiway samples<br>
			<BR>         
			<B>model.label.label_profile</B><BR>
			contains the input-vector labels on the basis of second mode variables<BR>
<BR>
			[<a href="#top" class="lnk_text">-> top</a>]		    
    		<BR>
		    <BR><a name="sub_3"></a>
		    <BR>
		    
		<span class="title_paragraph">_ How to plot the results</span>
		    <BR>
		    <BR>
		    You can open a MATLAB GUI to visualize the results. To do so, type:
			<BR>
		    <BR>
			<div id="tab_duo_text" class="text_math">
				visualize_model(model);
  	        </div>
			<BR>
		    where <a href="#sub_1" class="lnk_text">model</a> is the previously described model structure.
		     The follwoing GUI will appear:
			<BR>
		    <BR>
			<center>
              <img src="kohonen_visualize_small.gif" width="500" height="409"> <BR><BR>
              <a href="kohonen_visualize.gif" target="_blank" class="lnk_text">enlarge figure</a>			
			</center>
			<BR>
		    this plot represent the Kohonen top map, where input vectors and variable weights can be displayed. &quot;Display labels&quot; and &quot;Display weights&quot; set the input vector labels and variable weights respectivly. Neurons can be coloured from white (weight equal to zero, minimum value) to black (weight equal to 1, maximum  value). &quot;Update&quot; is the button for updating the plot. You can move the map (&quot;up&quot;, &quot;down&quot;, &quot;right&quot; and &quot;left&quot;), while &quot;get neuron weights&quot; opens a new plot displaying all the weights of a selected neuron and &quot;get neuron labels&quot; opens a new plot with the list of all the input vector labels of a selected neuron. <BR>
		     In order to better understand how to read the results, have a look to  <a href="example.htm" class="lnk_text">this example</a>. <BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]
			<BR>
		    <BR><a name="sub_4"></a>
		    <BR>
		    
		<span class="title_paragraph">_ Prediction of new samples</span>
		    <BR>
		    <BR>
		    In order to predict MOLMAP scores of new samples with an existing MOLMAP model, type:
			<BR>
		    <BR>
			<div id="tab_duo_text" class="text_math">
				pred = pred_multiway(Xnew,model);
  	        </div>
			<BR>
		    where Xnew is the data matrix (Inew x J x K) of the samples to be predicted 
			and <a href="#sub_1" class="lnk_text">model</a> is the previously described model structure.

			Pred is a structure, containing the following field: 
			<BR><BR>         
			<B>pred.top_map</B><BR>
			contains the positions (coordinates) of the  input vectors of the predicted samples in the Kohonen Map.

			<BR>
			<BR>
			<B>pred.score</B><BR>
			contains the predicted <span class="style1">MOLMAP scores</span> (Inew x size*size).<BR>
			<BR>
			[<a href="#top" class="lnk_text">-> top</a>]
			<BR>
			<BR>
			<BR>&nbsp;  	     
		 </div>
  
		  </div></td>
  		</tr>
	  </table>

    </div>

    <div id="footer">
		<iframe src="footer.htm" width="700" height="13" scrolling="no" frameborder="0">
  			no i_frames allowed :: change browser
	  	</iframe>
	</div>
</div>
</body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -