📄 som_settings.m
字号:
function settings = som_settings(type)
% default setting structure
% som_settings build a default structure
%
% settings = som_settings(type);
%
% input:
% type type of settings ('multiway')
%
% output:
% settings is a structure, with the following fields
% settings.nsize net size (default = NaN)
% settings.epochs number of total epochs (default = NaN)
% settings.bound boundary condition ('toroidal' or 'normal', defualt = 'toroidal')
% settings.enter entering mode of samples ('random' or 'sequential', defualt = 'random')
% settings.a_max initial learning rate, defualt = 0.5
% settings.a_min final learning rate, defualt = 0.01
% settings.a_chg learning rate proportional to epochs ('to_epo') or epochs*samples ('to_epoobj'), defualt = 'to_epo'
%
% see the HTML HELP files (help.htm) for extensive explanations, details and examples
%
% The toolbox is freeware and may be used (but not modified)
% if proper reference is given to the authors. Preferably refer to:
% D. Ballabio, V. Consonni, R. Todeschini
% Classification of multiway analytical data based on MOLMAP approach
% Analytica Chimica Acta, in press
%
% version 1.0 - november 2007
% Davide Ballabio
% Milano Chemometrics and QSAR Research Group
% www.disat.unimib.it/chm
settings = [];
settings.name = ['som_settings_' type];
settings.nsize = NaN; % net size
settings.epochs = NaN; % number of total epochs
settings.bound = 'toroidal'; % boundary condition ('toroidal' or 'normal')
settings.enter = 'random'; % entering mode of samples ('random' or 'sequential')
settings.a_max = 0.5; % initial learning rate
settings.a_min = 0.01; % final learning rate
settings.a_chg = 'to_epo'; % learning rate linear decreasing proportional to epochs ('to_epo') or epochs*samples ('to_epoobj')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -