⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jn.c

📁 newos is new operation system
💻 C
字号:
/*- * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifndef lintstatic char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";#endif /* not lint *//* * 16 December 1992 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. *//* * ==================================================== * Copyright (C) 1992 by Sun Microsystems, Inc. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * ******************* WARNING ******************** * This is an alpha version of SunPro's FDLIBM (Freely * Distributable Math Library) for IEEE double precision * arithmetic. FDLIBM is a basic math library written * in C that runs on machines that conform to IEEE * Standard 754/854. This alpha version is distributed * for testing purpose. Those who use this software * should report any bugs to * *		fdlibm-comments@sunpro.eng.sun.com * * -- K.C. Ng, Oct 12, 1992 * ************************************************ *//* * jn(int n, double x), yn(int n, double x) * floating point Bessel's function of the 1st and 2nd kind * of order n * * Special cases: *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. * Note 2. About jn(n,x), yn(n,x) *	For n=0, j0(x) is called, *	for n=1, j1(x) is called, *	for n<x, forward recursion us used starting *	from values of j0(x) and j1(x). *	for n>x, a continued fraction approximation to *	j(n,x)/j(n-1,x) is evaluated and then backward *	recursion is used starting from a supposed value *	for j(n,x). The resulting value of j(0,x) is *	compared with the actual value to correct the *	supposed value of j(n,x). * *	yn(n,x) is similar in all respects, except *	that forward recursion is used for all *	values of n>1. * */#include <math.h>#include <float.h>#include <errno.h>#if defined(vax) || defined(tahoe)#define _IEEE	0#else#define _IEEE	1#define infnan(x) (0.0)#endifstatic double const invsqrtpi= 5.641895835477562869480794515607725858441e-0001;static double const two  = 2.0;static double const zero = 0.0;static double const one  = 1.0;doublejn(int n, double x){	int i;	int sgn;	double a;	double b;	double temp;	double z;	double w;    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)     * Thus, J(-n,x) = J(n,-x)     */    /* if J(n,NaN) is NaN */	if (_IEEE && isnan(x)) return x+x;	if (n<0){		n = -n;		x = -x;	}	if (n==0) return(j0(x));	if (n==1) return(j1(x));	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */	x = fabs(x);	if (x == 0 || !finite (x)) { 	/* if x is 0 or inf */	    b = zero;	} else if ((double) n <= x) {			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */	    if (_IEEE && x >= 8.148143905337944345e+090) {					/* x >= 2**302 */    /* (x >> n**2)     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Let s=sin(x), c=cos(x),     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then     *     *		   n	sin(xn)*sqt2	cos(xn)*sqt2     *		----------------------------------     *		   0	 s-c		 c+s     *		   1	-s-c 		-c+s     *		   2	-s+c		-c-s     *		   3	 s+c		 c-s     */		switch(n&3) {		    case 0: temp =  cos(x)+sin(x); break;		    case 1: temp = -cos(x)+sin(x); break;		    case 2: temp = -cos(x)-sin(x); break;		    case 3: temp =  cos(x)-sin(x); break;		    default: temp = 0;	/* keep the stupid compiler silent */		}		b = invsqrtpi*temp/sqrt(x);	    } else {	        a = j0(x);	        b = j1(x);	        for(i=1;i<n;i++){		    temp = b;		    b = b*((double)(i+i)/x) - a; /* avoid underflow */		    a = temp;	        }	    }	} else {	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */    /* x is tiny, return the first Taylor expansion of J(n,x)     * J(n,x) = 1/n!*(x/2)^n  - ...     */		if (n > 33)	/* underflow */		    b = zero;		else {		    temp = x*0.5; b = temp;		    for (a=one,i=2;i<=n;i++) {			a *= (double)i;		/* a = n! */			b *= temp;		/* b = (x/2)^n */		    }		    b = b/a;		}	    } else {		/* use backward recurrence */		/* 			x      x^2      x^2		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....		 *			2n  - 2(n+1) - 2(n+2)		 *		 * 			1      1        1		 *  (for large x)   =  ----  ------   ------   .....		 *			2n   2(n+1)   2(n+2)		 *			-- - ------ - ------ -		 *			 x     x         x		 *		 * Let w = 2n/x and h=2/x, then the above quotient		 * is equal to the continued fraction:		 *		    1		 *	= -----------------------		 *		       1		 *	   w - -----------------		 *			  1		 * 	        w+h - ---------		 *		       w+2h - ...		 *		 * To determine how many terms needed, let		 * Q(0) = w, Q(1) = w(w+h) - 1,		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),		 * When Q(k) > 1e4	good for single		 * When Q(k) > 1e9	good for double		 * When Q(k) > 1e17	good for quadruple		 */	    /* determine k */		double t,v;		double q0,q1,h,tmp; int k,m;		w  = (n+n)/(double)x; h = 2.0/(double)x;		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;		while (q1<1.0e9) {			k += 1; z += h;			tmp = z*q1 - q0;			q0 = q1;			q1 = tmp;		}		m = n+n;		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);		a = t;		b = one;		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)		 *  Hence, if n*(log(2n/x)) > ...		 *  single 8.8722839355e+01		 *  double 7.09782712893383973096e+02		 *  long double 1.1356523406294143949491931077970765006170e+04		 *  then recurrent value may overflow and the result will		 *  likely underflow to zero		 */		tmp = n;		v = two/x;		tmp = tmp*log(fabs(v*tmp));	    	for (i=n-1;i>0;i--){		        temp = b;		        b = ((i+i)/x)*b - a;		        a = temp;		    /* scale b to avoid spurious overflow */#			if defined(vax) || defined(tahoe)#				define BMAX 1e13#			else#				define BMAX 1e100#			endif /* defined(vax) || defined(tahoe) */			if (b > BMAX) {				a /= b;				t /= b;				b = one;			}		}	    	b = (t*j0(x)/b);	    }	}	return ((sgn == 1) ? -b : b);}doubleyn(int n, double x){	int i;	int sign;	double a;	double b;	double temp;    /* Y(n,NaN), Y(n, x < 0) is NaN */	if (x <= 0 || (_IEEE && x != x)) {		if (_IEEE && x < 0) return zero/zero;		else if (x < 0)     return (infnan(EDOM));		else if (_IEEE)     return -one/zero;		else		    return(infnan(-ERANGE));	} else if (!finite(x)) {		return(0);	}	sign = 1;	if (n<0){		n = -n;		sign = 1 - ((n&1)<<2);	}	if (n == 0) return(y0(x));	if (n == 1) return(sign*y1(x));	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */    /* (x >> n**2)     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)     *	    Let s=sin(x), c=cos(x),     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then     *     *		   n	sin(xn)*sqt2	cos(xn)*sqt2     *		----------------------------------     *		   0	 s-c		 c+s     *		   1	-s-c 		-c+s     *		   2	-s+c		-c-s     *		   3	 s+c		 c-s     */		switch (n&3) {		    case 0: temp =  sin(x)-cos(x); break;		    case 1: temp = -sin(x)-cos(x); break;		    case 2: temp = -sin(x)+cos(x); break;		    case 3: temp =  sin(x)+cos(x); break;		    default: temp = 0;	/* keep the stupid compiler silent */		}		b = invsqrtpi*temp/sqrt(x);	} else {	    a = y0(x);	    b = y1(x);	/* quit if b is -inf */	    for (i = 1; i < n && !finite(b); i++){		temp = b;		b = ((double)(i+i)/x)*b - a;		a = temp;	    }	}	if (!_IEEE && !finite(b))		return (infnan(-sign * ERANGE));	return ((sign > 0) ? b : -b);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -