⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gamma.c

📁 newos is new operation system
💻 C
字号:
/*- * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. *//* * This code by P. McIlroy, Oct 1992; * * The financial support of UUNET Communications Services is greatfully * acknowledged. */#include <math.h>#include "mathimpl.h"#include <errno.h>/* METHOD: * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) * 	At negative integers, return +Inf, and set errno. * * x < 6.5: *	Use argument reduction G(x+1) = xG(x) to reach the *	range [1.066124,2.066124].  Use a rational *	approximation centered at the minimum (x0+1) to *	ensure monotonicity. * * x >= 6.5: Use the asymptotic approximation (Stirling's formula) *	adjusted for equal-ripples: * *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) * *	Keep extra precision in multiplying (x-.5)(log(x)-1), to *	avoid premature round-off. * * Special values: *	non-positive integer:	Set overflow trap; return +Inf; *	x > 171.63:		Set overflow trap; return +Inf; *	NaN: 			Set invalid trap;  return NaN * * Accuracy: Gamma(x) is accurate to within *	x > 0:  error provably < 0.9ulp. *	Maximum observed in 1,000,000 trials was .87ulp. *	x < 0: *	Maximum observed error < 4ulp in 1,000,000 trials. */static double neg_gam(double);static double small_gam(double);static double smaller_gam(double);static struct Double large_gam(double);static struct Double ratfun_gam(double, double);/* * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval * [1.066.., 2.066..] accurate to 4.25e-19. */#define LEFT -.3955078125	/* left boundary for rat. approx */#define x0 .461632144968362356785	/* xmin - 1 */#define a0_hi 0.88560319441088874992#define a0_lo -.00000000000000004996427036469019695#define P0	 6.21389571821820863029017800727e-01#define P1	 2.65757198651533466104979197553e-01#define P2	 5.53859446429917461063308081748e-03#define P3	 1.38456698304096573887145282811e-03#define P4	 2.40659950032711365819348969808e-03#define Q0	 1.45019531250000000000000000000e+00#define Q1	 1.06258521948016171343454061571e+00#define Q2	-2.07474561943859936441469926649e-01#define Q3	-1.46734131782005422506287573015e-01#define Q4	 3.07878176156175520361557573779e-02#define Q5	 5.12449347980666221336054633184e-03#define Q6	-1.76012741431666995019222898833e-03#define Q7	 9.35021023573788935372153030556e-05#define Q8	 6.13275507472443958924745652239e-06/* * Constants for large x approximation (x in [6, Inf]) * (Accurate to 2.8*10^-19 absolute) */#define lns2pi_hi 0.418945312500000#define lns2pi_lo -.000006779295327258219670263595#define Pa0	 8.33333333333333148296162562474e-02#define Pa1	-2.77777777774548123579378966497e-03#define Pa2	 7.93650778754435631476282786423e-04#define Pa3	-5.95235082566672847950717262222e-04#define Pa4	 8.41428560346653702135821806252e-04#define Pa5	-1.89773526463879200348872089421e-03#define Pa6	 5.69394463439411649408050664078e-03#define Pa7	-1.44705562421428915453880392761e-02static const double zero = 0., one = 1.0, tiny = 1e-300;static int endian;/* * TRUNC sets trailing bits in a floating-point number to zero. * is a temporary variable. */#if defined(vax) || defined(tahoe)#define _IEEE		0#define TRUNC(x)	x = (double) (float) (x)#else#define _IEEE		1#define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000#define infnan(x)	0.0#endifdoublegamma(x)	double x;{	struct Double u;	endian = (*(int *) &one) ? 1 : 0;	if (x >= 6) {		if(x > 171.63)			return(one/zero);		u = large_gam(x);		return(__exp__D(u.a, u.b));	} else if (x >= 1.0 + LEFT + x0) {		return (small_gam(x));	} else if (x > 1.e-17) {		return (smaller_gam(x));	} else if (x > -1.e-17) {		if (x == 0.0) {			if (!_IEEE) return (infnan(ERANGE));			else return (one/x);		}		(void volatile)(one+1e-20);	/* Raise inexact flag. */		return (one/x);	} else if (!finite(x)) {		if (_IEEE)		/* x = NaN, -Inf */			return (x*x);		else			return (infnan(EDOM));	} else {		return (neg_gam(x));	}}/* * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. */staticstruct Doublelarge_gam(double x){	double z;	double p;	struct Double t;	struct Double u;	struct Double v;	z = one/(x*x);	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));	p = p/x;	u = __log__D(x);	u.a -= one;	v.a = (x -= .5);	TRUNC(v.a);	v.b = x - v.a;	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */	t.b = v.b*u.a + x*u.b;	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */	t.b += lns2pi_lo; t.b += p;	u.a = lns2pi_hi + t.b; u.a += t.a;	u.b = t.a - u.a;	u.b += lns2pi_hi; u.b += t.b;	return (u);}/* * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.) * It also has correct monotonicity. */staticdoublesmall_gam(double x){	double y;	double ym1;	double t;	struct Double yy;	struct Double r;	y = x - one;	ym1 = y - one;	if (y <= 1.0 + (LEFT + x0)) {		yy = ratfun_gam(y - x0, 0);		return (yy.a + yy.b);	}	r.a = y;	TRUNC(r.a);	yy.a = r.a - one;	y = ym1;	yy.b = r.b = y - yy.a;	/* Argument reduction: G(x+1) = x*G(x) */	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {		t = r.a*yy.a;		r.b = r.a*yy.b + y*r.b;		r.a = t;		TRUNC(r.a);		r.b += (t - r.a);	}	/* Return r*gamma(y). */	yy = ratfun_gam(y - x0, 0);	y = r.b*(yy.a + yy.b) + r.a*yy.b;	y += yy.a*r.a;	return (y);}/* * Good on (0, 1+x0+LEFT].  Accurate to 1ulp. */staticdoublesmaller_gam(double x){	double t;	double d;	struct Double r;	struct Double xx;	if (x < x0 + LEFT) {		t = x, TRUNC(t);		d = (t+x)*(x-t);		t *= t;		xx.a = (t + x), TRUNC(xx.a);		xx.b = x - xx.a; xx.b += t; xx.b += d;		t = (one-x0); t += x;		d = (one-x0); d -= t; d += x;		x = xx.a + xx.b;	} else {		xx.a =  x, TRUNC(xx.a);		xx.b = x - xx.a;		t = x - x0;		d = (-x0 -t); d += x;	}	r = ratfun_gam(t, d);	d = r.a/x, TRUNC(d);	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;	return (d + r.a/x);}/* * returns (z+c)^2 * P(z)/Q(z) + a0 */staticstruct Doubleratfun_gam(double z, double c){	double p;	double q;	struct Double r;	struct Double t;	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */	p = p/q;	t.a = z, TRUNC(t.a);		/* t ~= z + c */	t.b = (z - t.a) + c;	t.b *= (t.a + z);	q = (t.a *= t.a);		/* t = (z+c)^2 */	TRUNC(t.a);	t.b += (q - t.a);	r.a = p, TRUNC(r.a);		/* r = P/Q */	r.b = p - r.a;	t.b = t.b*p + t.a*r.b + a0_lo;	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */	r.a = t.a + a0_hi, TRUNC(r.a);	r.b = ((a0_hi-r.a) + t.a) + t.b;	return (r);			/* r = a0 + t */}staticdoubleneg_gam(double x){	int sgn = 1;	struct Double lg;	struct Double lsine;	double y;	double z;	y = floor(x + .5);	if (y == x) {		/* Negative integer. */		if(!_IEEE)			return (infnan(ERANGE));		else			return (one/zero);	}	z = fabs(x - y);	y = .5*ceil(x);	if (y == ceil(y))		sgn = -1;	if (z < .25)		z = sin(M_PI*z);	else		z = cos(M_PI*(0.5-z));	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */	if (x < -170) {		if (x < -190)			return ((double)sgn*tiny*tiny);		y = one - x;		/* exact: 128 < |x| < 255 */		lg = large_gam(y);		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */		lg.a -= lsine.a;		/* exact (opposite signs) */		lg.b -= lsine.b;		y = -(lg.a + lg.b);		z = (y + lg.a) + lg.b;		y = __exp__D(y, z);		if (sgn < 0) y = -y;		return (y);	}	y = one-x;	if (one-y == x)		y = gamma(y);	else		/* 1-x is inexact */		y = -x*gamma(-x);	if (sgn < 0) y = -y;	return (M_PI / (y*z));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -