⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 j1.c

📁 newos is new operation system
💻 C
📖 第 1 页 / 共 2 页
字号:
/*- * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifndef lintstatic char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";#endif /* not lint *//* * 16 December 1992 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. *//* * ==================================================== * Copyright (C) 1992 by Sun Microsystems, Inc. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * ******************* WARNING ******************** * This is an alpha version of SunPro's FDLIBM (Freely * Distributable Math Library) for IEEE double precision * arithmetic. FDLIBM is a basic math library written * in C that runs on machines that conform to IEEE * Standard 754/854. This alpha version is distributed * for testing purpose. Those who use this software * should report any bugs to * *		fdlibm-comments@sunpro.eng.sun.com * * -- K.C. Ng, Oct 12, 1992 * ************************************************ *//* double j1(double x), y1(double x) * Bessel function of the first and second kinds of order zero. * Method -- j1(x): *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... *	2. Reduce x to |x| since j1(x)=-j1(-x),  and *	   for x in (0,2) *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x; *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 ) *	   for x in (2,inf) * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) *	   as follows: *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4) *			=  1/sqrt(2) * (sin(x) - cos(x)) *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4) *			= -1/sqrt(2) * (sin(x) + cos(x)) * 	   (To avoid cancellation, use *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * 	    to compute the worse one.) * *	3 Special cases *		j1(nan)= nan *		j1(0) = 0 *		j1(inf) = 0 * * Method -- y1(x): *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN *	2. For x<2. *	   Since *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. *	   We use the following function to approximate y1, *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 *	   where for x in [0,2] (abs err less than 2**-65.89) *		U(z) = u0 + u1*z + ... + u4*z^4 *		V(z) = 1  + v1*z + ... + v5*z^5 *	   Note: For tiny x, 1/x dominate y1 and hence *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) *	3. For x>=2. * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) *	   by method mentioned above. */#include <math.h>#include <float.h>#if defined(vax) || defined(tahoe)#define _IEEE	0#else#define _IEEE	1#define infnan(x) (0.0)#endifstatic double pone(double);static double qone(double);static double const huge     = 1e300;static double const zero     = 0.0;static double const one      = 1.0;static double const invsqrtpi= 5.641895835477562869480794515607725858441e-0001;static double const tpi      = 0.636619772367581343075535053490057448;	/* R0/S0 on [0,2] */static double const r00 =  -6.250000000000000020842322918309200910191e-0002;static double const r01 =   1.407056669551897148204830386691427791200e-0003;static double const r02 =  -1.599556310840356073980727783817809847071e-0005;static double const r03 =   4.967279996095844750387702652791615403527e-0008;static double const s01 =   1.915375995383634614394860200531091839635e-0002;static double const s02 =   1.859467855886309024045655476348872850396e-0004;static double const s03 =   1.177184640426236767593432585906758230822e-0006;static double const s04 =   5.046362570762170559046714468225101016915e-0009;static double const s05 =   1.235422744261379203512624973117299248281e-0011;#define two_129	6.80564733841876926e+038	/* 2^129 */#define two_m54	5.55111512312578270e-017	/* 2^-54 */doublej1(double x){	double z;	double s;	double c;	double ss;	double cc;	double r;	double u;	double v;	double y;	y = fabs(x);	if (!finite(x)) {		/* Inf or NaN */		if (_IEEE && x != x)			return(x);		else			return (copysign(x, zero));	}	y = fabs(x);	if (y >= 2) {			/* |x| >= 2.0 */		s = sin(y);		c = cos(y);		ss = -s-c;		cc = s-c;		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */		    z = cos(y+y);		    if ((s*c)<zero) cc = z/ss;		    else 	    ss = z/cc;		}	/*	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)	 */#if !defined(vax) && !defined(tahoe)		if (y > two_129)	 /* x > 2^129 */			z = (invsqrtpi*cc)/sqrt(y);		else#endif /* defined(vax) || defined(tahoe) */		{		    u = pone(y); v = qone(y);		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);		}		if (x < 0) return -z;		else  	 return  z;	}	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */	}	z = x*x;	r =  z*(r00+z*(r01+z*(r02+z*r03)));	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));	r *= x;	return (x*0.5+r/s);}static double const u0[5] = {  -1.960570906462389484206891092512047539632e-0001,   5.044387166398112572026169863174882070274e-0002,  -1.912568958757635383926261729464141209569e-0003,   2.352526005616105109577368905595045204577e-0005,   -9.190991580398788465315411784276789663849e-0008,};static double const v0[5] = {   1.991673182366499064031901734535479833387e-0002,   2.025525810251351806268483867032781294682e-0004,   1.356088010975162198085369545564475416398e-0006,   6.227414523646214811803898435084697863445e-0009,   1.665592462079920695971450872592458916421e-0011,};doubley1(double x){	double z;	double s;	double c;	double ss;	double cc;	double u;	double v;    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */	if (!finite(x)) {		if (!_IEEE) return (infnan(EDOM));		else if (x < 0)			return(zero/zero);		else if (x > 0)			return (0);		else			return(x);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -