⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lgamma.c

📁 newos is new operation system
💻 C
字号:
/*- * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifndef lintstatic char sccsid[] = "@(#)lgamma.c	8.2 (Berkeley) 11/30/93";#endif /* not lint *//* * Coded by Peter McIlroy, Nov 1992; * * The financial support of UUNET Communications Services is greatfully * acknowledged. */#include <math.h>#include <errno.h>#include "mathimpl.h"/* Log gamma function. * Error:  x > 0 error < 1.3ulp. *	   x > 4, error < 1ulp. *	   x > 9, error < .6ulp. * 	   x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0) * Method: *	x > 6: *		Use the asymptotic expansion (Stirling's Formula) *	0 < x < 6: *		Use gamma(x+1) = x*gamma(x) for argument reduction. *		Use rational approximation in *		the range 1.2, 2.5 *		Two approximations are used, one centered at the *		minimum to ensure monotonicity; one centered at 2 *		to maintain small relative error. *	x < 0: *		Use the reflection formula, *		G(1-x)G(x) = PI/sin(PI*x) * Special values: *	non-positive integer	returns +Inf. *	NaN			returns NaN*/static int endian;#if defined(vax) || defined(tahoe)#define _IEEE		0/* double and float have same size exponent field */#define TRUNC(x)	x = (double) (float) (x)#else#define _IEEE		1#define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000#define infnan(x)	0.0#endifstatic double small_lgam(double);static double large_lgam(double);static double neg_lgam(double);static double zero = 0.0, one = 1.0;int signgam;#define UNDERFL (1e-1020 * 1e-1020)#define LEFT	(1.0 - (x0 + .25))#define RIGHT	(x0 - .218)/* * Constants for approximation in [1.244,1.712]*/#define x0	0.461632144968362356785#define x0_lo	-.000000000000000015522348162858676890521#define a0_hi	-0.12148629128932952880859#define a0_lo	.0000000007534799204229502#define r0	-2.771227512955130520e-002#define r1	-2.980729795228150847e-001#define r2	-3.257411333183093394e-001#define r3	-1.126814387531706041e-001#define r4	-1.129130057170225562e-002#define r5	-2.259650588213369095e-005#define s0	 1.714457160001714442e+000#define s1	 2.786469504618194648e+000#define s2	 1.564546365519179805e+000#define s3	 3.485846389981109850e-001#define s4	 2.467759345363656348e-002/* * Constants for approximation in [1.71, 2.5]*/#define a1_hi	4.227843350984671344505727574870e-01#define a1_lo	4.670126436531227189e-18#define p0	3.224670334241133695662995251041e-01#define p1	3.569659696950364669021382724168e-01#define p2	1.342918716072560025853732668111e-01#define p3	1.950702176409779831089963408886e-02#define p4	8.546740251667538090796227834289e-04#define q0	1.000000000000000444089209850062e+00#define q1	1.315850076960161985084596381057e+00#define q2	6.274644311862156431658377186977e-01#define q3	1.304706631926259297049597307705e-01#define q4	1.102815279606722369265536798366e-02#define q5	2.512690594856678929537585620579e-04#define q6	-1.003597548112371003358107325598e-06/* * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].*/#define lns2pi	.418938533204672741780329736405#define pb0	 8.33333333333333148296162562474e-02#define pb1	-2.77777777774548123579378966497e-03#define pb2	 7.93650778754435631476282786423e-04#define pb3	-5.95235082566672847950717262222e-04#define pb4	 8.41428560346653702135821806252e-04#define pb5	-1.89773526463879200348872089421e-03#define pb6	 5.69394463439411649408050664078e-03#define pb7	-1.44705562421428915453880392761e-02/* __pure double */doublelgamma(double x){	double r;	signgam = 1;	endian = ((*(int *) &one)) ? 1 : 0;	if (!finite(x)) {		if (_IEEE)			return (x+x);		else return (infnan(EDOM));	}	if (x > 6 + RIGHT) {		r = large_lgam(x);		return (r);	} else if (x > 1e-16) {		return (small_lgam(x));	} else if (x > -1e-16) {		if (x < 0)			signgam = -1, x = -x;		return (-log(x));	} else {		return (neg_lgam(x));	}}static doublelarge_lgam(double x){	double z, p, x1;	int i;	struct Double t, u, v;	u = __log__D(x);	u.a -= 1.0;	if (x > 1e15) {		v.a = x - 0.5;		TRUNC(v.a);		v.b = (x - v.a) - 0.5;		t.a = u.a*v.a;		t.b = x*u.b + v.b*u.a;		if (_IEEE == 0 && !finite(t.a))			return(infnan(ERANGE));		return(t.a + t.b);	}	x1 = 1./x;	z = x1*x1;	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));					/* error in approximation = 2.8e-19 */	p = p*x1;			/* error < 2.3e-18 absolute */					/* 0 < p < 1/64 (at x = 5.5) */	v.a = x = x - 0.5;	TRUNC(v.a);			/* truncate v.a to 26 bits. */	v.b = x - v.a;	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */	t.b = v.b*u.a + x*u.b;	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */	return (t.a + t.b);}static doublesmall_lgam(double x){	int x_int;	double y, z, t, r = 0, p, q, hi, lo;	struct Double rr;	x_int = (x + .5);	y = x - x_int;	if (x_int <= 2 && y > RIGHT) {		t = y - x0;		y--; x_int++;		goto CONTINUE;	} else if (y < -LEFT) {		t = y +(1.0-x0);CONTINUE:		z = t - x0_lo;		p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));		q = s0+z*(s1+z*(s2+z*(s3+z*s4)));		r = t*(z*(p/q) - x0_lo);		t = .5*t*t;		z = 1.0;		switch (x_int) {		case 6:	z  = (y + 5);		case 5:	z *= (y + 4);		case 4:	z *= (y + 3);		case 3:	z *= (y + 2);			rr = __log__D(z);			rr.b += a0_lo; rr.a += a0_hi;			return(((r+rr.b)+t+rr.a));		case 2: return(((r+a0_lo)+t)+a0_hi);		case 0: r -= log1p(x);		default: rr = __log__D(x);			rr.a -= a0_hi; rr.b -= a0_lo;			return(((r - rr.b) + t) - rr.a);		}	} else {		p = p0+y*(p1+y*(p2+y*(p3+y*p4)));		q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));		p = p*(y/q);		t = (double)(float) y;		z = y-t;		hi = (double)(float) (p+a1_hi);		lo = a1_hi - hi; lo += p; lo += a1_lo;		r = lo*y + z*hi;	/* q + r = y*(a0+p/q) */		q = hi*t;		z = 1.0;		switch (x_int) {		case 6:	z  = (y + 5);		case 5:	z *= (y + 4);		case 4:	z *= (y + 3);		case 3:	z *= (y + 2);			rr = __log__D(z);			r += rr.b; r += q;			return(rr.a + r);		case 2:	return (q+ r);		case 0: rr = __log__D(x);			r -= rr.b; r -= log1p(x);			r += q; r-= rr.a;			return(r);		default: rr = __log__D(x);			r -= rr.b;			q -= rr.a;			return (r+q);		}	}}static doubleneg_lgam(double x){	int xi;	double y, z, one = 1.0, zero = 0.0;	extern double gamma();	/* avoid destructive cancellation as much as possible */	if (x > -170) {		xi = x;		if (xi == x) {			if (_IEEE)				return(one/zero);			else				return(infnan(ERANGE));		}		y = gamma(x);		if (y < 0)			y = -y, signgam = -1;		return (log(y));	}	z = floor(x + .5);	if (z == x) {		/* convention: G(-(integer)) -> +Inf */		if (_IEEE)			return (one/zero);		else			return (infnan(ERANGE));	}	y = .5*ceil(x);	if (y == ceil(y))		signgam = -1;	x = -x;	z = fabs(x + z);	/* 0 < z <= .5 */	if (z < .25)		z = sin(M_PI*z);	else		z = cos(M_PI*(0.5-z));	z = log(M_PI/(z*x));	y = large_lgam(x);	return (z - y);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -