📄 fastcor.c
字号:
/***********************************************************************
FASTCOR.C - 使用FFT实现快速相关
该程序利用FFT实现快速相关运算.
输入序列为两个具有相关性的信号,一个输入信号
为两个不同频率的信号迭加而成,另一个输入信号
为其中一个频率的单频信号.若两个输入信号相同
则为自相关.
使用子程序为:
fft 基2 DIF FFT 子程序
ifft 基2 DIF IFFT 子程序
log2 基2求对数函数
draw_image 绘图子程序
***********************************************************************/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <conio.h>
#include <graphics.h>
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define PI (4.0*atan(1.0))
/* COMPLEX STRUCTURE */
typedef struct {
float real, imag;
} COMPLEX;
void fft(COMPLEX *,int);
void ifft(COMPLEX *,int);
int log2(unsigned int x);
void draw_image(double *x,int m,char *title1,char *title2,
char *xdis1,char *xdis2,int dis_type);
/********************************************************/
void main(void)
{
unsigned int i, length1,length2,m,fft_length;
char title[80],tmp[20];
double *signal;
double a,tempflt;
COMPLEX *samp, *filt;
/* Set the input data specified by the user */
length1 = 300; /* 信号1 长度 */
length2 = 50; /* 信号2 长度 */
m = log2(2*MAX(length1,length2));
fft_length = 1<<m;
signal = (double *) calloc(fft_length,sizeof(double));
if(!signal){
printf("\n Could not allocate sample memory.\n");
exit(1);
}
for (i = 0; i < length1; i++) {
signal[i] = cos(6.0*1.0*PI*(double)i*2.0/length1);
printf("*");
}
for (i = 0; i < length1; i++) {
signal[i] = signal[i]+cos(138.0*PI*(double)i*2.0/length1);
printf("*");
}
strcpy(title,"The Input Signal Data (x1[n])");
draw_image(signal,length1,title,"The Magnitude value","0",
itoa(length1,tmp,10),0);
samp = (COMPLEX *) calloc(fft_length, sizeof(COMPLEX));
if(!samp){
printf("\n Could not allocate sample memory.\n");
exit(1);
}
for (i = 0; i < length1; i++) samp[i].real = signal[i];
fft(samp,m);
/* Display the log magnitude of the FFT */
a = (double)length1*length1;
for (i = 0; i < fft_length; i++) {
tempflt = samp[i].real * samp[i].real;
tempflt += samp[i].imag * samp[i].imag;
tempflt = tempflt/a;
signal[i] = 10 * log10(MAX(tempflt,1.e-10));
}
strcpy(title,"The Input Data FFT Result X1[m]");
draw_image(signal,fft_length,title,"The Magnitude (dB)","0",
itoa(fft_length,tmp,10),0);
/* Zero fill the filter to the sequence length */
filt = (COMPLEX *) calloc(fft_length, sizeof(COMPLEX));
if(!filt){
printf("\n Could not allocate filter memory.\n");
exit(1);
}
for (i = 0; i < length2; i++) signal[i] = 0;
for (i = 0; i < length2; i++) {
signal[i] = cos(1.0*PI*(double)i*2.0/length2);
filt[i].real = signal[i];
printf("*");
}
strcpy(title,"The Input Data (x2[n])");
draw_image(signal,length2,title,"The Magnitude value","0",
itoa(length2,tmp,10),0);
/* FFT the zero filled filter impulse response */
fft(filt,m);
a = (double)length2*length2;
for (i = 0; i < fft_length; i++) {
tempflt = filt[i].real * filt[i].real;
tempflt += filt[i].imag * filt[i].imag;
tempflt = tempflt/a;
signal[i] = 10 * log10(MAX(tempflt,1e-10));
}
strcpy(title,"The Input Data FFT Result X2[m]");
draw_image(signal,fft_length,title,"The Magnitude (dB)","0",
itoa(fft_length,tmp,10),0);
/* Multiply the two transformed sequences */
for (i = 0; i < fft_length; i++) {
tempflt = samp[i].real * filt[i].real
+ samp[i].imag * filt[i].imag;
samp[i].imag = samp[i].imag * filt[i].real
- samp[i].real * filt[i].imag;
samp[i].real = tempflt;
}
/* Inverse fft the multiplied sequences */
ifft(samp,m);
/* Display the result */
for (i = 0; i < length1+length2; i++) signal[i] = samp[i].real;
strcpy(title,"The Result of Correlation");
draw_image(signal,length1+length2,title,"The Magnitude Value","0",
itoa(length1+length2,tmp,10),0);
free(signal);
free(samp);
free(filt);
}
/************************************************************************
fft - 基2 DIF FFT 子程序
输入参数:
COMPLEX *x : FFT 输入和输出数据区指针;
int m : FFT 长度 ( length = 2^m );
输出参数:
输出数据放在 x 所指的输入数据区.
无输出参数.
void fft(COMPLEX *x, int m)
*************************************************************************/
void fft(COMPLEX *x,int m)
{
static COMPLEX *w; /* used to store the w complex array */
static int mstore = 0; /* stores m for future reference */
static int n = 1; /* length of fft stored for future */
COMPLEX u,temp,tm;
COMPLEX *xi,*xip,*xj,*wptr;
int i,j,k,l,le,windex;
double arg,w_real,w_imag,wrecur_real,wrecur_imag,wtemp_real;
if(m != mstore) {
/* free previously allocated storage and set new m */
if(mstore != 0) free(w);
mstore = m;
if(m == 0) return; /* if m=0 then done */
/* n = 2**m = fft length */
n = 1 << m;
le = n/2;
/* allocate the storage for w */
w = (COMPLEX *) calloc(le-1,sizeof(COMPLEX));
if(!w) {
printf("\nUnable to allocate complex W array\n");
exit(1);
}
/* calculate the w values recursively */
arg = 4.0*atan(1.0)/le; /* PI/le calculation */
wrecur_real = w_real = cos(arg);
wrecur_imag = w_imag = -sin(arg);
xj = w;
for (j = 1 ; j < le ; j++) {
xj->real = (float)wrecur_real;
xj->imag = (float)wrecur_imag;
xj++;
wtemp_real = wrecur_real*w_real - wrecur_imag*w_imag;
wrecur_imag = wrecur_real*w_imag + wrecur_imag*w_real;
wrecur_real = wtemp_real;
}
}
/* start fft */
le = n;
windex = 1;
for (l = 0 ; l < m ; l++) {
le = le/2;
/* first iteration with no multiplies */
for(i = 0 ; i < n ; i = i + 2*le) {
xi = x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
xip->real = xi->real - xip->real;
xip->imag = xi->imag - xip->imag;
*xi = temp;
}
/* remaining iterations use stored w */
wptr = w + windex - 1;
for (j = 1 ; j < le ; j++) {
u = *wptr;
for (i = j ; i < n ; i = i + 2*le) {
xi = x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
tm.real = xi->real - xip->real;
tm.imag = xi->imag - xip->imag;
xip->real = tm.real*u.real - tm.imag*u.imag;
xip->imag = tm.real*u.imag + tm.imag*u.real;
*xi = temp;
}
wptr = wptr + windex;
}
windex = 2*windex;
}
/* rearrange data by bit reversing */
j = 0;
for (i = 1 ; i < (n-1) ; i++) {
k = n/2;
while(k <= j) {
j = j - k;
k = k/2;
}
j = j + k;
if (i < j) {
xi = x + i;
xj = x + j;
temp = *xj;
*xj = *xi;
*xi = temp;
}
}
}
/************************************************************************
ifft - 基2 DIF IFFT 子程序
输入参数:
COMPLEX *x : IFFT 输入和输出数据区指针;
int m : IFFT 长度 ( length = 2^m );
输出参数:
输出数据放在 x 所指的输入数据区.
无输出参数.
void ifft(COMPLEX *x, int m)
*************************************************************************/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -