⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgemm.f

📁 贝尔实验室多年开发的矩阵计算程序库的说明文件
💻 F
字号:
      SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)*     .. Scalar Arguments ..      REAL ALPHA,BETA      INTEGER K,LDA,LDB,LDC,M,N      CHARACTER TRANSA,TRANSB*     ..*     .. Array Arguments ..      REAL A(LDA,*),B(LDB,*),C(LDC,*)*     ..**  Purpose*  =======**  SGEMM  performs one of the matrix-matrix operations**     C := alpha*op( A )*op( B ) + beta*C,**  where  op( X ) is one of**     op( X ) = X   or   op( X ) = X',**  alpha and beta are scalars, and A, B and C are matrices, with op( A )*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.**  Arguments*  ==========**  TRANSA - CHARACTER*1.*           On entry, TRANSA specifies the form of op( A ) to be used in*           the matrix multiplication as follows:**              TRANSA = 'N' or 'n',  op( A ) = A.**              TRANSA = 'T' or 't',  op( A ) = A'.**              TRANSA = 'C' or 'c',  op( A ) = A'.**           Unchanged on exit.**  TRANSB - CHARACTER*1.*           On entry, TRANSB specifies the form of op( B ) to be used in*           the matrix multiplication as follows:**              TRANSB = 'N' or 'n',  op( B ) = B.**              TRANSB = 'T' or 't',  op( B ) = B'.**              TRANSB = 'C' or 'c',  op( B ) = B'.**           Unchanged on exit.**  M      - INTEGER.*           On entry,  M  specifies  the number  of rows  of the  matrix*           op( A )  and of the  matrix  C.  M  must  be at least  zero.*           Unchanged on exit.**  N      - INTEGER.*           On entry,  N  specifies the number  of columns of the matrix*           op( B ) and the number of columns of the matrix C. N must be*           at least zero.*           Unchanged on exit.**  K      - INTEGER.*           On entry,  K  specifies  the number of columns of the matrix*           op( A ) and the number of rows of the matrix op( B ). K must*           be at least  zero.*           Unchanged on exit.**  ALPHA  - REAL            .*           On entry, ALPHA specifies the scalar alpha.*           Unchanged on exit.**  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k*           part of the array  A  must contain the matrix  A,  otherwise*           the leading  k by m  part of the array  A  must contain  the*           matrix A.*           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then*           LDA must be at least  max( 1, m ), otherwise  LDA must be at*           least  max( 1, k ).*           Unchanged on exit.**  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n*           part of the array  B  must contain the matrix  B,  otherwise*           the leading  n by k  part of the array  B  must contain  the*           matrix B.*           Unchanged on exit.**  LDB    - INTEGER.*           On entry, LDB specifies the first dimension of B as declared*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then*           LDB must be at least  max( 1, k ), otherwise  LDB must be at*           least  max( 1, n ).*           Unchanged on exit.**  BETA   - REAL            .*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is*           supplied as zero then C need not be set on input.*           Unchanged on exit.**  C      - REAL             array of DIMENSION ( LDC, n ).*           Before entry, the leading  m by n  part of the array  C must*           contain the matrix  C,  except when  beta  is zero, in which*           case C need not be set on entry.*           On exit, the array  C  is overwritten by the  m by n  matrix*           ( alpha*op( A )*op( B ) + beta*C ).**  LDC    - INTEGER.*           On entry, LDC specifies the first dimension of C as declared*           in  the  calling  (sub)  program.   LDC  must  be  at  least*           max( 1, m ).*           Unchanged on exit.***  Level 3 Blas routine.**  -- Written on 8-February-1989.*     Jack Dongarra, Argonne National Laboratory.*     Iain Duff, AERE Harwell.*     Jeremy Du Croz, Numerical Algorithms Group Ltd.*     Sven Hammarling, Numerical Algorithms Group Ltd.***     .. External Functions ..      LOGICAL LSAME      EXTERNAL LSAME*     ..*     .. External Subroutines ..      EXTERNAL XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC MAX*     ..*     .. Local Scalars ..      REAL TEMP      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB      LOGICAL NOTA,NOTB*     ..*     .. Parameters ..      REAL ONE,ZERO      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)*     ..**     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows*     and  columns of  A  and the  number of  rows  of  B  respectively.*      NOTA = LSAME(TRANSA,'N')      NOTB = LSAME(TRANSB,'N')      IF (NOTA) THEN          NROWA = M          NCOLA = K      ELSE          NROWA = K          NCOLA = M      END IF      IF (NOTB) THEN          NROWB = K      ELSE          NROWB = N      END IF**     Test the input parameters.*      INFO = 0      IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.     +    (.NOT.LSAME(TRANSA,'T'))) THEN          INFO = 1      ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.     +         (.NOT.LSAME(TRANSB,'T'))) THEN          INFO = 2      ELSE IF (M.LT.0) THEN          INFO = 3      ELSE IF (N.LT.0) THEN          INFO = 4      ELSE IF (K.LT.0) THEN          INFO = 5      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN          INFO = 8      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN          INFO = 10      ELSE IF (LDC.LT.MAX(1,M)) THEN          INFO = 13      END IF      IF (INFO.NE.0) THEN          CALL XERBLA('SGEMM ',INFO)          RETURN      END IF**     Quick return if possible.*      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN**     And if  alpha.eq.zero.*      IF (ALPHA.EQ.ZERO) THEN          IF (BETA.EQ.ZERO) THEN              DO 20 J = 1,N                  DO 10 I = 1,M                      C(I,J) = ZERO   10             CONTINUE   20         CONTINUE          ELSE              DO 40 J = 1,N                  DO 30 I = 1,M                      C(I,J) = BETA*C(I,J)   30             CONTINUE   40         CONTINUE          END IF          RETURN      END IF**     Start the operations.*      IF (NOTB) THEN          IF (NOTA) THEN**           Form  C := alpha*A*B + beta*C.*              DO 90 J = 1,N                  IF (BETA.EQ.ZERO) THEN                      DO 50 I = 1,M                          C(I,J) = ZERO   50                 CONTINUE                  ELSE IF (BETA.NE.ONE) THEN                      DO 60 I = 1,M                          C(I,J) = BETA*C(I,J)   60                 CONTINUE                  END IF                  DO 80 L = 1,K                      IF (B(L,J).NE.ZERO) THEN                          TEMP = ALPHA*B(L,J)                          DO 70 I = 1,M                              C(I,J) = C(I,J) + TEMP*A(I,L)   70                     CONTINUE                      END IF   80             CONTINUE   90         CONTINUE          ELSE**           Form  C := alpha*A'*B + beta*C*              DO 120 J = 1,N                  DO 110 I = 1,M                      TEMP = ZERO                      DO 100 L = 1,K                          TEMP = TEMP + A(L,I)*B(L,J)  100                 CONTINUE                      IF (BETA.EQ.ZERO) THEN                          C(I,J) = ALPHA*TEMP                      ELSE                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)                      END IF  110             CONTINUE  120         CONTINUE          END IF      ELSE          IF (NOTA) THEN**           Form  C := alpha*A*B' + beta*C*              DO 170 J = 1,N                  IF (BETA.EQ.ZERO) THEN                      DO 130 I = 1,M                          C(I,J) = ZERO  130                 CONTINUE                  ELSE IF (BETA.NE.ONE) THEN                      DO 140 I = 1,M                          C(I,J) = BETA*C(I,J)  140                 CONTINUE                  END IF                  DO 160 L = 1,K                      IF (B(J,L).NE.ZERO) THEN                          TEMP = ALPHA*B(J,L)                          DO 150 I = 1,M                              C(I,J) = C(I,J) + TEMP*A(I,L)  150                     CONTINUE                      END IF  160             CONTINUE  170         CONTINUE          ELSE**           Form  C := alpha*A'*B' + beta*C*              DO 200 J = 1,N                  DO 190 I = 1,M                      TEMP = ZERO                      DO 180 L = 1,K                          TEMP = TEMP + A(L,I)*B(J,L)  180                 CONTINUE                      IF (BETA.EQ.ZERO) THEN                          C(I,J) = ALPHA*TEMP                      ELSE                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)                      END IF  190             CONTINUE  200         CONTINUE          END IF      END IF*      RETURN**     End of SGEMM .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -