⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chpr.f

📁 贝尔实验室多年开发的矩阵计算程序库的说明文件
💻 F
字号:
      SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)*     .. Scalar Arguments ..      REAL ALPHA      INTEGER INCX,N      CHARACTER UPLO*     ..*     .. Array Arguments ..      COMPLEX AP(*),X(*)*     ..**  Purpose*  =======**  CHPR    performs the hermitian rank 1 operation**     A := alpha*x*conjg( x' ) + A,**  where alpha is a real scalar, x is an n element vector and A is an*  n by n hermitian matrix, supplied in packed form.**  Arguments*  ==========**  UPLO   - CHARACTER*1.*           On entry, UPLO specifies whether the upper or lower*           triangular part of the matrix A is supplied in the packed*           array AP as follows:**              UPLO = 'U' or 'u'   The upper triangular part of A is*                                  supplied in AP.**              UPLO = 'L' or 'l'   The lower triangular part of A is*                                  supplied in AP.**           Unchanged on exit.**  N      - INTEGER.*           On entry, N specifies the order of the matrix A.*           N must be at least zero.*           Unchanged on exit.**  ALPHA  - REAL            .*           On entry, ALPHA specifies the scalar alpha.*           Unchanged on exit.**  X      - COMPLEX          array of dimension at least*           ( 1 + ( n - 1 )*abs( INCX ) ).*           Before entry, the incremented array X must contain the n*           element vector x.*           Unchanged on exit.**  INCX   - INTEGER.*           On entry, INCX specifies the increment for the elements of*           X. INCX must not be zero.*           Unchanged on exit.**  AP     - COMPLEX          array of DIMENSION at least*           ( ( n*( n + 1 ) )/2 ).*           Before entry with  UPLO = 'U' or 'u', the array AP must*           contain the upper triangular part of the hermitian matrix*           packed sequentially, column by column, so that AP( 1 )*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )*           and a( 2, 2 ) respectively, and so on. On exit, the array*           AP is overwritten by the upper triangular part of the*           updated matrix.*           Before entry with UPLO = 'L' or 'l', the array AP must*           contain the lower triangular part of the hermitian matrix*           packed sequentially, column by column, so that AP( 1 )*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )*           and a( 3, 1 ) respectively, and so on. On exit, the array*           AP is overwritten by the lower triangular part of the*           updated matrix.*           Note that the imaginary parts of the diagonal elements need*           not be set, they are assumed to be zero, and on exit they*           are set to zero.***  Level 2 Blas routine.**  -- Written on 22-October-1986.*     Jack Dongarra, Argonne National Lab.*     Jeremy Du Croz, Nag Central Office.*     Sven Hammarling, Nag Central Office.*     Richard Hanson, Sandia National Labs.***     .. Parameters ..      COMPLEX ZERO      PARAMETER (ZERO= (0.0E+0,0.0E+0))*     ..*     .. Local Scalars ..      COMPLEX TEMP      INTEGER I,INFO,IX,J,JX,K,KK,KX*     ..*     .. External Functions ..      LOGICAL LSAME      EXTERNAL LSAME*     ..*     .. External Subroutines ..      EXTERNAL XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC CONJG,REAL*     ..**     Test the input parameters.*      INFO = 0      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN          INFO = 1      ELSE IF (N.LT.0) THEN          INFO = 2      ELSE IF (INCX.EQ.0) THEN          INFO = 5      END IF      IF (INFO.NE.0) THEN          CALL XERBLA('CHPR  ',INFO)          RETURN      END IF**     Quick return if possible.*      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN**     Set the start point in X if the increment is not unity.*      IF (INCX.LE.0) THEN          KX = 1 - (N-1)*INCX      ELSE IF (INCX.NE.1) THEN          KX = 1      END IF**     Start the operations. In this version the elements of the array AP*     are accessed sequentially with one pass through AP.*      KK = 1      IF (LSAME(UPLO,'U')) THEN**        Form  A  when upper triangle is stored in AP.*          IF (INCX.EQ.1) THEN              DO 20 J = 1,N                  IF (X(J).NE.ZERO) THEN                      TEMP = ALPHA*CONJG(X(J))                      K = KK                      DO 10 I = 1,J - 1                          AP(K) = AP(K) + X(I)*TEMP                          K = K + 1   10                 CONTINUE                      AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)                  ELSE                      AP(KK+J-1) = REAL(AP(KK+J-1))                  END IF                  KK = KK + J   20         CONTINUE          ELSE              JX = KX              DO 40 J = 1,N                  IF (X(JX).NE.ZERO) THEN                      TEMP = ALPHA*CONJG(X(JX))                      IX = KX                      DO 30 K = KK,KK + J - 2                          AP(K) = AP(K) + X(IX)*TEMP                          IX = IX + INCX   30                 CONTINUE                      AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)                  ELSE                      AP(KK+J-1) = REAL(AP(KK+J-1))                  END IF                  JX = JX + INCX                  KK = KK + J   40         CONTINUE          END IF      ELSE**        Form  A  when lower triangle is stored in AP.*          IF (INCX.EQ.1) THEN              DO 60 J = 1,N                  IF (X(J).NE.ZERO) THEN                      TEMP = ALPHA*CONJG(X(J))                      AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))                      K = KK + 1                      DO 50 I = J + 1,N                          AP(K) = AP(K) + X(I)*TEMP                          K = K + 1   50                 CONTINUE                  ELSE                      AP(KK) = REAL(AP(KK))                  END IF                  KK = KK + N - J + 1   60         CONTINUE          ELSE              JX = KX              DO 80 J = 1,N                  IF (X(JX).NE.ZERO) THEN                      TEMP = ALPHA*CONJG(X(JX))                      AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))                      IX = JX                      DO 70 K = KK + 1,KK + N - J                          IX = IX + INCX                          AP(K) = AP(K) + X(IX)*TEMP   70                 CONTINUE                  ELSE                      AP(KK) = REAL(AP(KK))                  END IF                  JX = JX + INCX                  KK = KK + N - J + 1   80         CONTINUE          END IF      END IF*      RETURN**     End of CHPR  .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -