⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cherk.f

📁 贝尔实验室多年开发的矩阵计算程序库的说明文件
💻 F
字号:
      SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)*     .. Scalar Arguments ..      REAL ALPHA,BETA      INTEGER K,LDA,LDC,N      CHARACTER TRANS,UPLO*     ..*     .. Array Arguments ..      COMPLEX A(LDA,*),C(LDC,*)*     ..**  Purpose*  =======**  CHERK  performs one of the hermitian rank k operations**     C := alpha*A*conjg( A' ) + beta*C,**  or**     C := alpha*conjg( A' )*A + beta*C,**  where  alpha and beta  are  real scalars,  C is an  n by n  hermitian*  matrix and  A  is an  n by k  matrix in the  first case and a  k by n*  matrix in the second case.**  Arguments*  ==========**  UPLO   - CHARACTER*1.*           On  entry,   UPLO  specifies  whether  the  upper  or  lower*           triangular  part  of the  array  C  is to be  referenced  as*           follows:**              UPLO = 'U' or 'u'   Only the  upper triangular part of  C*                                  is to be referenced.**              UPLO = 'L' or 'l'   Only the  lower triangular part of  C*                                  is to be referenced.**           Unchanged on exit.**  TRANS  - CHARACTER*1.*           On entry,  TRANS  specifies the operation to be performed as*           follows:**              TRANS = 'N' or 'n'   C := alpha*A*conjg( A' ) + beta*C.**              TRANS = 'C' or 'c'   C := alpha*conjg( A' )*A + beta*C.**           Unchanged on exit.**  N      - INTEGER.*           On entry,  N specifies the order of the matrix C.  N must be*           at least zero.*           Unchanged on exit.**  K      - INTEGER.*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number*           of  columns   of  the   matrix   A,   and  on   entry   with*           TRANS = 'C' or 'c',  K  specifies  the number of rows of the*           matrix A.  K must be at least zero.*           Unchanged on exit.**  ALPHA  - REAL            .*           On entry, ALPHA specifies the scalar alpha.*           Unchanged on exit.**  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k*           part of the array  A  must contain the matrix  A,  otherwise*           the leading  k by n  part of the array  A  must contain  the*           matrix A.*           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'*           then  LDA must be at least  max( 1, n ), otherwise  LDA must*           be at least  max( 1, k ).*           Unchanged on exit.**  BETA   - REAL            .*           On entry, BETA specifies the scalar beta.*           Unchanged on exit.**  C      - COMPLEX          array of DIMENSION ( LDC, n ).*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n*           upper triangular part of the array C must contain the upper*           triangular part  of the  hermitian matrix  and the strictly*           lower triangular part of C is not referenced.  On exit, the*           upper triangular part of the array  C is overwritten by the*           upper triangular part of the updated matrix.*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n*           lower triangular part of the array C must contain the lower*           triangular part  of the  hermitian matrix  and the strictly*           upper triangular part of C is not referenced.  On exit, the*           lower triangular part of the array  C is overwritten by the*           lower triangular part of the updated matrix.*           Note that the imaginary parts of the diagonal elements need*           not be set,  they are assumed to be zero,  and on exit they*           are set to zero.**  LDC    - INTEGER.*           On entry, LDC specifies the first dimension of C as declared*           in  the  calling  (sub)  program.   LDC  must  be  at  least*           max( 1, n ).*           Unchanged on exit.***  Level 3 Blas routine.**  -- Written on 8-February-1989.*     Jack Dongarra, Argonne National Laboratory.*     Iain Duff, AERE Harwell.*     Jeremy Du Croz, Numerical Algorithms Group Ltd.*     Sven Hammarling, Numerical Algorithms Group Ltd.**  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.*     Ed Anderson, Cray Research Inc.***     .. External Functions ..      LOGICAL LSAME      EXTERNAL LSAME*     ..*     .. External Subroutines ..      EXTERNAL XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC CMPLX,CONJG,MAX,REAL*     ..*     .. Local Scalars ..      COMPLEX TEMP      REAL RTEMP      INTEGER I,INFO,J,L,NROWA      LOGICAL UPPER*     ..*     .. Parameters ..      REAL ONE,ZERO      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)*     ..**     Test the input parameters.*      IF (LSAME(TRANS,'N')) THEN          NROWA = N      ELSE          NROWA = K      END IF      UPPER = LSAME(UPLO,'U')*      INFO = 0      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN          INFO = 1      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.     +         (.NOT.LSAME(TRANS,'C'))) THEN          INFO = 2      ELSE IF (N.LT.0) THEN          INFO = 3      ELSE IF (K.LT.0) THEN          INFO = 4      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN          INFO = 7      ELSE IF (LDC.LT.MAX(1,N)) THEN          INFO = 10      END IF      IF (INFO.NE.0) THEN          CALL XERBLA('CHERK ',INFO)          RETURN      END IF**     Quick return if possible.*      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN**     And when  alpha.eq.zero.*      IF (ALPHA.EQ.ZERO) THEN          IF (UPPER) THEN              IF (BETA.EQ.ZERO) THEN                  DO 20 J = 1,N                      DO 10 I = 1,J                          C(I,J) = ZERO   10                 CONTINUE   20             CONTINUE              ELSE                  DO 40 J = 1,N                      DO 30 I = 1,J - 1                          C(I,J) = BETA*C(I,J)   30                 CONTINUE                      C(J,J) = BETA*REAL(C(J,J))   40             CONTINUE              END IF          ELSE              IF (BETA.EQ.ZERO) THEN                  DO 60 J = 1,N                      DO 50 I = J,N                          C(I,J) = ZERO   50                 CONTINUE   60             CONTINUE              ELSE                  DO 80 J = 1,N                      C(J,J) = BETA*REAL(C(J,J))                      DO 70 I = J + 1,N                          C(I,J) = BETA*C(I,J)   70                 CONTINUE   80             CONTINUE              END IF          END IF          RETURN      END IF**     Start the operations.*      IF (LSAME(TRANS,'N')) THEN**        Form  C := alpha*A*conjg( A' ) + beta*C.*          IF (UPPER) THEN              DO 130 J = 1,N                  IF (BETA.EQ.ZERO) THEN                      DO 90 I = 1,J                          C(I,J) = ZERO   90                 CONTINUE                  ELSE IF (BETA.NE.ONE) THEN                      DO 100 I = 1,J - 1                          C(I,J) = BETA*C(I,J)  100                 CONTINUE                      C(J,J) = BETA*REAL(C(J,J))                  ELSE                      C(J,J) = REAL(C(J,J))                  END IF                  DO 120 L = 1,K                      IF (A(J,L).NE.CMPLX(ZERO)) THEN                          TEMP = ALPHA*CONJG(A(J,L))                          DO 110 I = 1,J - 1                              C(I,J) = C(I,J) + TEMP*A(I,L)  110                     CONTINUE                          C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(I,L))                      END IF  120             CONTINUE  130         CONTINUE          ELSE              DO 180 J = 1,N                  IF (BETA.EQ.ZERO) THEN                      DO 140 I = J,N                          C(I,J) = ZERO  140                 CONTINUE                  ELSE IF (BETA.NE.ONE) THEN                      C(J,J) = BETA*REAL(C(J,J))                      DO 150 I = J + 1,N                          C(I,J) = BETA*C(I,J)  150                 CONTINUE                  ELSE                      C(J,J) = REAL(C(J,J))                  END IF                  DO 170 L = 1,K                      IF (A(J,L).NE.CMPLX(ZERO)) THEN                          TEMP = ALPHA*CONJG(A(J,L))                          C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(J,L))                          DO 160 I = J + 1,N                              C(I,J) = C(I,J) + TEMP*A(I,L)  160                     CONTINUE                      END IF  170             CONTINUE  180         CONTINUE          END IF      ELSE**        Form  C := alpha*conjg( A' )*A + beta*C.*          IF (UPPER) THEN              DO 220 J = 1,N                  DO 200 I = 1,J - 1                      TEMP = ZERO                      DO 190 L = 1,K                          TEMP = TEMP + CONJG(A(L,I))*A(L,J)  190                 CONTINUE                      IF (BETA.EQ.ZERO) THEN                          C(I,J) = ALPHA*TEMP                      ELSE                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)                      END IF  200             CONTINUE                  RTEMP = ZERO                  DO 210 L = 1,K                      RTEMP = RTEMP + CONJG(A(L,J))*A(L,J)  210             CONTINUE                  IF (BETA.EQ.ZERO) THEN                      C(J,J) = ALPHA*RTEMP                  ELSE                      C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))                  END IF  220         CONTINUE          ELSE              DO 260 J = 1,N                  RTEMP = ZERO                  DO 230 L = 1,K                      RTEMP = RTEMP + CONJG(A(L,J))*A(L,J)  230             CONTINUE                  IF (BETA.EQ.ZERO) THEN                      C(J,J) = ALPHA*RTEMP                  ELSE                      C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))                  END IF                  DO 250 I = J + 1,N                      TEMP = ZERO                      DO 240 L = 1,K                          TEMP = TEMP + CONJG(A(L,I))*A(L,J)  240                 CONTINUE                      IF (BETA.EQ.ZERO) THEN                          C(I,J) = ALPHA*TEMP                      ELSE                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)                      END IF  250             CONTINUE  260         CONTINUE          END IF      END IF*      RETURN**     End of CHERK .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -