📄 cherk.f
字号:
SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)* .. Scalar Arguments .. REAL ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO* ..* .. Array Arguments .. COMPLEX A(LDA,*),C(LDC,*)* ..** Purpose* =======** CHERK performs one of the hermitian rank k operations** C := alpha*A*conjg( A' ) + beta*C,** or** C := alpha*conjg( A' )*A + beta*C,** where alpha and beta are real scalars, C is an n by n hermitian* matrix and A is an n by k matrix in the first case and a k by n* matrix in the second case.** Arguments* ==========** UPLO - CHARACTER*1.* On entry, UPLO specifies whether the upper or lower* triangular part of the array C is to be referenced as* follows:** UPLO = 'U' or 'u' Only the upper triangular part of C* is to be referenced.** UPLO = 'L' or 'l' Only the lower triangular part of C* is to be referenced.** Unchanged on exit.** TRANS - CHARACTER*1.* On entry, TRANS specifies the operation to be performed as* follows:** TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.** TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.** Unchanged on exit.** N - INTEGER.* On entry, N specifies the order of the matrix C. N must be* at least zero.* Unchanged on exit.** K - INTEGER.* On entry with TRANS = 'N' or 'n', K specifies the number* of columns of the matrix A, and on entry with* TRANS = 'C' or 'c', K specifies the number of rows of the* matrix A. K must be at least zero.* Unchanged on exit.** ALPHA - REAL .* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is* k when TRANS = 'N' or 'n', and is n otherwise.* Before entry with TRANS = 'N' or 'n', the leading n by k* part of the array A must contain the matrix A, otherwise* the leading k by n part of the array A must contain the* matrix A.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. When TRANS = 'N' or 'n'* then LDA must be at least max( 1, n ), otherwise LDA must* be at least max( 1, k ).* Unchanged on exit.** BETA - REAL .* On entry, BETA specifies the scalar beta.* Unchanged on exit.** C - COMPLEX array of DIMENSION ( LDC, n ).* Before entry with UPLO = 'U' or 'u', the leading n by n* upper triangular part of the array C must contain the upper* triangular part of the hermitian matrix and the strictly* lower triangular part of C is not referenced. On exit, the* upper triangular part of the array C is overwritten by the* upper triangular part of the updated matrix.* Before entry with UPLO = 'L' or 'l', the leading n by n* lower triangular part of the array C must contain the lower* triangular part of the hermitian matrix and the strictly* upper triangular part of C is not referenced. On exit, the* lower triangular part of the array C is overwritten by the* lower triangular part of the updated matrix.* Note that the imaginary parts of the diagonal elements need* not be set, they are assumed to be zero, and on exit they* are set to zero.** LDC - INTEGER.* On entry, LDC specifies the first dimension of C as declared* in the calling (sub) program. LDC must be at least* max( 1, n ).* Unchanged on exit.*** Level 3 Blas routine.** -- Written on 8-February-1989.* Jack Dongarra, Argonne National Laboratory.* Iain Duff, AERE Harwell.* Jeremy Du Croz, Numerical Algorithms Group Ltd.* Sven Hammarling, Numerical Algorithms Group Ltd.** -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.* Ed Anderson, Cray Research Inc.*** .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* ..* .. External Subroutines .. EXTERNAL XERBLA* ..* .. Intrinsic Functions .. INTRINSIC CMPLX,CONJG,MAX,REAL* ..* .. Local Scalars .. COMPLEX TEMP REAL RTEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER* ..* .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)* ..** Test the input parameters.* IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U')* INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHERK ',INFO) RETURN END IF** Quick return if possible.* IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN** And when alpha.eq.zero.* IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J - 1 C(I,J) = BETA*C(I,J) 30 CONTINUE C(J,J) = BETA*REAL(C(J,J)) 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N C(J,J) = BETA*REAL(C(J,J)) DO 70 I = J + 1,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF** Start the operations.* IF (LSAME(TRANS,'N')) THEN** Form C := alpha*A*conjg( A' ) + beta*C.* IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J - 1 C(I,J) = BETA*C(I,J) 100 CONTINUE C(J,J) = BETA*REAL(C(J,J)) ELSE C(J,J) = REAL(C(J,J)) END IF DO 120 L = 1,K IF (A(J,L).NE.CMPLX(ZERO)) THEN TEMP = ALPHA*CONJG(A(J,L)) DO 110 I = 1,J - 1 C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(I,L)) END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN C(J,J) = BETA*REAL(C(J,J)) DO 150 I = J + 1,N C(I,J) = BETA*C(I,J) 150 CONTINUE ELSE C(J,J) = REAL(C(J,J)) END IF DO 170 L = 1,K IF (A(J,L).NE.CMPLX(ZERO)) THEN TEMP = ALPHA*CONJG(A(J,L)) C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(J,L)) DO 160 I = J + 1,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE** Form C := alpha*conjg( A' )*A + beta*C.* IF (UPPER) THEN DO 220 J = 1,N DO 200 I = 1,J - 1 TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + CONJG(A(L,I))*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE RTEMP = ZERO DO 210 L = 1,K RTEMP = RTEMP + CONJG(A(L,J))*A(L,J) 210 CONTINUE IF (BETA.EQ.ZERO) THEN C(J,J) = ALPHA*RTEMP ELSE C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J)) END IF 220 CONTINUE ELSE DO 260 J = 1,N RTEMP = ZERO DO 230 L = 1,K RTEMP = RTEMP + CONJG(A(L,J))*A(L,J) 230 CONTINUE IF (BETA.EQ.ZERO) THEN C(J,J) = ALPHA*RTEMP ELSE C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J)) END IF DO 250 I = J + 1,N TEMP = ZERO DO 240 L = 1,K TEMP = TEMP + CONJG(A(L,I))*A(L,J) 240 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 250 CONTINUE 260 CONTINUE END IF END IF* RETURN** End of CHERK .* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -