📄 zher2.f
字号:
SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)* .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO* ..* .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*)* ..** Purpose* =======** ZHER2 performs the hermitian rank 2 operation** A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,** where alpha is a scalar, x and y are n element vectors and A is an n* by n hermitian matrix.** Arguments* ==========** UPLO - CHARACTER*1.* On entry, UPLO specifies whether the upper or lower* triangular part of the array A is to be referenced as* follows:** UPLO = 'U' or 'u' Only the upper triangular part of A* is to be referenced.** UPLO = 'L' or 'l' Only the lower triangular part of A* is to be referenced.** Unchanged on exit.** N - INTEGER.* On entry, N specifies the order of the matrix A.* N must be at least zero.* Unchanged on exit.** ALPHA - COMPLEX*16 .* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** X - COMPLEX*16 array of dimension at least* ( 1 + ( n - 1 )*abs( INCX ) ).* Before entry, the incremented array X must contain the n* element vector x.* Unchanged on exit.** INCX - INTEGER.* On entry, INCX specifies the increment for the elements of* X. INCX must not be zero.* Unchanged on exit.** Y - COMPLEX*16 array of dimension at least* ( 1 + ( n - 1 )*abs( INCY ) ).* Before entry, the incremented array Y must contain the n* element vector y.* Unchanged on exit.** INCY - INTEGER.* On entry, INCY specifies the increment for the elements of* Y. INCY must not be zero.* Unchanged on exit.** A - COMPLEX*16 array of DIMENSION ( LDA, n ).* Before entry with UPLO = 'U' or 'u', the leading n by n* upper triangular part of the array A must contain the upper* triangular part of the hermitian matrix and the strictly* lower triangular part of A is not referenced. On exit, the* upper triangular part of the array A is overwritten by the* upper triangular part of the updated matrix.* Before entry with UPLO = 'L' or 'l', the leading n by n* lower triangular part of the array A must contain the lower* triangular part of the hermitian matrix and the strictly* upper triangular part of A is not referenced. On exit, the* lower triangular part of the array A is overwritten by the* lower triangular part of the updated matrix.* Note that the imaginary parts of the diagonal elements need* not be set, they are assumed to be zero, and on exit they* are set to zero.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. LDA must be at least* max( 1, n ).* Unchanged on exit.*** Level 2 Blas routine.** -- Written on 22-October-1986.* Jack Dongarra, Argonne National Lab.* Jeremy Du Croz, Nag Central Office.* Sven Hammarling, Nag Central Office.* Richard Hanson, Sandia National Labs.*** .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0))* ..* .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY* ..* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* ..* .. External Subroutines .. EXTERNAL XERBLA* ..* .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX* ..** Test the input parameters.* INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER2 ',INFO) RETURN END IF** Quick return if possible.* IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN** Set up the start points in X and Y if the increments are not both* unity.* IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF** Start the operations. In this version the elements of A are* accessed sequentially with one pass through the triangular part* of A.* IF (LSAME(UPLO,'U')) THEN** Form A when A is stored in the upper triangle.* IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE A(J,J) = DBLE(A(J,J)) + + DBLE(X(J)*TEMP1+Y(J)*TEMP2) ELSE A(J,J) = DBLE(A(J,J)) END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE A(J,J) = DBLE(A(J,J)) + + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE** Form A when A is stored in the lower triangle.* IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) A(J,J) = DBLE(A(J,J)) + + DBLE(X(J)*TEMP1+Y(J)*TEMP2) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) A(J,J) = DBLE(A(J,J)) + + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 I = J + 1,N IX = IX + INCX IY = IY + INCY A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF* RETURN** End of ZHER2 .* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -