⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtbmv.f

📁 贝尔实验室多年开发的矩阵计算程序库的说明文件
💻 F
字号:
      SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)*     .. Scalar Arguments ..      INTEGER INCX,K,LDA,N      CHARACTER DIAG,TRANS,UPLO*     ..*     .. Array Arguments ..      DOUBLE PRECISION A(LDA,*),X(*)*     ..**  Purpose*  =======**  DTBMV  performs one of the matrix-vector operations**     x := A*x,   or   x := A'*x,**  where x is an n element vector and  A is an n by n unit, or non-unit,*  upper or lower triangular band matrix, with ( k + 1 ) diagonals.**  Arguments*  ==========**  UPLO   - CHARACTER*1.*           On entry, UPLO specifies whether the matrix is an upper or*           lower triangular matrix as follows:**              UPLO = 'U' or 'u'   A is an upper triangular matrix.**              UPLO = 'L' or 'l'   A is a lower triangular matrix.**           Unchanged on exit.**  TRANS  - CHARACTER*1.*           On entry, TRANS specifies the operation to be performed as*           follows:**              TRANS = 'N' or 'n'   x := A*x.**              TRANS = 'T' or 't'   x := A'*x.**              TRANS = 'C' or 'c'   x := A'*x.**           Unchanged on exit.**  DIAG   - CHARACTER*1.*           On entry, DIAG specifies whether or not A is unit*           triangular as follows:**              DIAG = 'U' or 'u'   A is assumed to be unit triangular.**              DIAG = 'N' or 'n'   A is not assumed to be unit*                                  triangular.**           Unchanged on exit.**  N      - INTEGER.*           On entry, N specifies the order of the matrix A.*           N must be at least zero.*           Unchanged on exit.**  K      - INTEGER.*           On entry with UPLO = 'U' or 'u', K specifies the number of*           super-diagonals of the matrix A.*           On entry with UPLO = 'L' or 'l', K specifies the number of*           sub-diagonals of the matrix A.*           K must satisfy  0 .le. K.*           Unchanged on exit.**  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )*           by n part of the array A must contain the upper triangular*           band part of the matrix of coefficients, supplied column by*           column, with the leading diagonal of the matrix in row*           ( k + 1 ) of the array, the first super-diagonal starting at*           position 2 in row k, and so on. The top left k by k triangle*           of the array A is not referenced.*           The following program segment will transfer an upper*           triangular band matrix from conventional full matrix storage*           to band storage:**                 DO 20, J = 1, N*                    M = K + 1 - J*                    DO 10, I = MAX( 1, J - K ), J*                       A( M + I, J ) = matrix( I, J )*              10    CONTINUE*              20 CONTINUE**           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )*           by n part of the array A must contain the lower triangular*           band part of the matrix of coefficients, supplied column by*           column, with the leading diagonal of the matrix in row 1 of*           the array, the first sub-diagonal starting at position 1 in*           row 2, and so on. The bottom right k by k triangle of the*           array A is not referenced.*           The following program segment will transfer a lower*           triangular band matrix from conventional full matrix storage*           to band storage:**                 DO 20, J = 1, N*                    M = 1 - J*                    DO 10, I = J, MIN( N, J + K )*                       A( M + I, J ) = matrix( I, J )*              10    CONTINUE*              20 CONTINUE**           Note that when DIAG = 'U' or 'u' the elements of the array A*           corresponding to the diagonal elements of the matrix are not*           referenced, but are assumed to be unity.*           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in the calling (sub) program. LDA must be at least*           ( k + 1 ).*           Unchanged on exit.**  X      - DOUBLE PRECISION array of dimension at least*           ( 1 + ( n - 1 )*abs( INCX ) ).*           Before entry, the incremented array X must contain the n*           element vector x. On exit, X is overwritten with the*           tranformed vector x.**  INCX   - INTEGER.*           On entry, INCX specifies the increment for the elements of*           X. INCX must not be zero.*           Unchanged on exit.***  Level 2 Blas routine.**  -- Written on 22-October-1986.*     Jack Dongarra, Argonne National Lab.*     Jeremy Du Croz, Nag Central Office.*     Sven Hammarling, Nag Central Office.*     Richard Hanson, Sandia National Labs.***     .. Parameters ..      DOUBLE PRECISION ZERO      PARAMETER (ZERO=0.0D+0)*     ..*     .. Local Scalars ..      DOUBLE PRECISION TEMP      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L      LOGICAL NOUNIT*     ..*     .. External Functions ..      LOGICAL LSAME      EXTERNAL LSAME*     ..*     .. External Subroutines ..      EXTERNAL XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC MAX,MIN*     ..**     Test the input parameters.*      INFO = 0      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN          INFO = 1      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.     +         .NOT.LSAME(TRANS,'C')) THEN          INFO = 2      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN          INFO = 3      ELSE IF (N.LT.0) THEN          INFO = 4      ELSE IF (K.LT.0) THEN          INFO = 5      ELSE IF (LDA.LT. (K+1)) THEN          INFO = 7      ELSE IF (INCX.EQ.0) THEN          INFO = 9      END IF      IF (INFO.NE.0) THEN          CALL XERBLA('DTBMV ',INFO)          RETURN      END IF**     Quick return if possible.*      IF (N.EQ.0) RETURN*      NOUNIT = LSAME(DIAG,'N')**     Set up the start point in X if the increment is not unity. This*     will be  ( N - 1 )*INCX   too small for descending loops.*      IF (INCX.LE.0) THEN          KX = 1 - (N-1)*INCX      ELSE IF (INCX.NE.1) THEN          KX = 1      END IF**     Start the operations. In this version the elements of A are*     accessed sequentially with one pass through A.*      IF (LSAME(TRANS,'N')) THEN**         Form  x := A*x.*          IF (LSAME(UPLO,'U')) THEN              KPLUS1 = K + 1              IF (INCX.EQ.1) THEN                  DO 20 J = 1,N                      IF (X(J).NE.ZERO) THEN                          TEMP = X(J)                          L = KPLUS1 - J                          DO 10 I = MAX(1,J-K),J - 1                              X(I) = X(I) + TEMP*A(L+I,J)   10                     CONTINUE                          IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)                      END IF   20             CONTINUE              ELSE                  JX = KX                  DO 40 J = 1,N                      IF (X(JX).NE.ZERO) THEN                          TEMP = X(JX)                          IX = KX                          L = KPLUS1 - J                          DO 30 I = MAX(1,J-K),J - 1                              X(IX) = X(IX) + TEMP*A(L+I,J)                              IX = IX + INCX   30                     CONTINUE                          IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)                      END IF                      JX = JX + INCX                      IF (J.GT.K) KX = KX + INCX   40             CONTINUE              END IF          ELSE              IF (INCX.EQ.1) THEN                  DO 60 J = N,1,-1                      IF (X(J).NE.ZERO) THEN                          TEMP = X(J)                          L = 1 - J                          DO 50 I = MIN(N,J+K),J + 1,-1                              X(I) = X(I) + TEMP*A(L+I,J)   50                     CONTINUE                          IF (NOUNIT) X(J) = X(J)*A(1,J)                      END IF   60             CONTINUE              ELSE                  KX = KX + (N-1)*INCX                  JX = KX                  DO 80 J = N,1,-1                      IF (X(JX).NE.ZERO) THEN                          TEMP = X(JX)                          IX = KX                          L = 1 - J                          DO 70 I = MIN(N,J+K),J + 1,-1                              X(IX) = X(IX) + TEMP*A(L+I,J)                              IX = IX - INCX   70                     CONTINUE                          IF (NOUNIT) X(JX) = X(JX)*A(1,J)                      END IF                      JX = JX - INCX                      IF ((N-J).GE.K) KX = KX - INCX   80             CONTINUE              END IF          END IF      ELSE**        Form  x := A'*x.*          IF (LSAME(UPLO,'U')) THEN              KPLUS1 = K + 1              IF (INCX.EQ.1) THEN                  DO 100 J = N,1,-1                      TEMP = X(J)                      L = KPLUS1 - J                      IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)                      DO 90 I = J - 1,MAX(1,J-K),-1                          TEMP = TEMP + A(L+I,J)*X(I)   90                 CONTINUE                      X(J) = TEMP  100             CONTINUE              ELSE                  KX = KX + (N-1)*INCX                  JX = KX                  DO 120 J = N,1,-1                      TEMP = X(JX)                      KX = KX - INCX                      IX = KX                      L = KPLUS1 - J                      IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)                      DO 110 I = J - 1,MAX(1,J-K),-1                          TEMP = TEMP + A(L+I,J)*X(IX)                          IX = IX - INCX  110                 CONTINUE                      X(JX) = TEMP                      JX = JX - INCX  120             CONTINUE              END IF          ELSE              IF (INCX.EQ.1) THEN                  DO 140 J = 1,N                      TEMP = X(J)                      L = 1 - J                      IF (NOUNIT) TEMP = TEMP*A(1,J)                      DO 130 I = J + 1,MIN(N,J+K)                          TEMP = TEMP + A(L+I,J)*X(I)  130                 CONTINUE                      X(J) = TEMP  140             CONTINUE              ELSE                  JX = KX                  DO 160 J = 1,N                      TEMP = X(JX)                      KX = KX + INCX                      IX = KX                      L = 1 - J                      IF (NOUNIT) TEMP = TEMP*A(1,J)                      DO 150 I = J + 1,MIN(N,J+K)                          TEMP = TEMP + A(L+I,J)*X(IX)                          IX = IX + INCX  150                 CONTINUE                      X(JX) = TEMP                      JX = JX + INCX  160             CONTINUE              END IF          END IF      END IF*      RETURN**     End of DTBMV .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -