📄 cgemm.f
字号:
SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)* .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB* ..* .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)* ..** Purpose* =======** CGEMM performs one of the matrix-matrix operations** C := alpha*op( A )*op( B ) + beta*C,** where op( X ) is one of** op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),** alpha and beta are scalars, and A, B and C are matrices, with op( A )* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.** Arguments* ==========** TRANSA - CHARACTER*1.* On entry, TRANSA specifies the form of op( A ) to be used in* the matrix multiplication as follows:** TRANSA = 'N' or 'n', op( A ) = A.** TRANSA = 'T' or 't', op( A ) = A'.** TRANSA = 'C' or 'c', op( A ) = conjg( A' ).** Unchanged on exit.** TRANSB - CHARACTER*1.* On entry, TRANSB specifies the form of op( B ) to be used in* the matrix multiplication as follows:** TRANSB = 'N' or 'n', op( B ) = B.** TRANSB = 'T' or 't', op( B ) = B'.** TRANSB = 'C' or 'c', op( B ) = conjg( B' ).** Unchanged on exit.** M - INTEGER.* On entry, M specifies the number of rows of the matrix* op( A ) and of the matrix C. M must be at least zero.* Unchanged on exit.** N - INTEGER.* On entry, N specifies the number of columns of the matrix* op( B ) and the number of columns of the matrix C. N must be* at least zero.* Unchanged on exit.** K - INTEGER.* On entry, K specifies the number of columns of the matrix* op( A ) and the number of rows of the matrix op( B ). K must* be at least zero.* Unchanged on exit.** ALPHA - COMPLEX .* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is* k when TRANSA = 'N' or 'n', and is m otherwise.* Before entry with TRANSA = 'N' or 'n', the leading m by k* part of the array A must contain the matrix A, otherwise* the leading k by m part of the array A must contain the* matrix A.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. When TRANSA = 'N' or 'n' then* LDA must be at least max( 1, m ), otherwise LDA must be at* least max( 1, k ).* Unchanged on exit.** B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is* n when TRANSB = 'N' or 'n', and is k otherwise.* Before entry with TRANSB = 'N' or 'n', the leading k by n* part of the array B must contain the matrix B, otherwise* the leading n by k part of the array B must contain the* matrix B.* Unchanged on exit.** LDB - INTEGER.* On entry, LDB specifies the first dimension of B as declared* in the calling (sub) program. When TRANSB = 'N' or 'n' then* LDB must be at least max( 1, k ), otherwise LDB must be at* least max( 1, n ).* Unchanged on exit.** BETA - COMPLEX .* On entry, BETA specifies the scalar beta. When BETA is* supplied as zero then C need not be set on input.* Unchanged on exit.** C - COMPLEX array of DIMENSION ( LDC, n ).* Before entry, the leading m by n part of the array C must* contain the matrix C, except when beta is zero, in which* case C need not be set on entry.* On exit, the array C is overwritten by the m by n matrix* ( alpha*op( A )*op( B ) + beta*C ).** LDC - INTEGER.* On entry, LDC specifies the first dimension of C as declared* in the calling (sub) program. LDC must be at least* max( 1, m ).* Unchanged on exit.*** Level 3 Blas routine.** -- Written on 8-February-1989.* Jack Dongarra, Argonne National Laboratory.* Iain Duff, AERE Harwell.* Jeremy Du Croz, Numerical Algorithms Group Ltd.* Sven Hammarling, Numerical Algorithms Group Ltd.*** .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* ..* .. External Subroutines .. EXTERNAL XERBLA* ..* .. Intrinsic Functions .. INTRINSIC CONJG,MAX* ..* .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL CONJA,CONJB,NOTA,NOTB* ..* .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0))* ..** Set NOTA and NOTB as true if A and B respectively are not* conjugated or transposed, set CONJA and CONJB as true if A and* B respectively are to be transposed but not conjugated and set* NROWA, NCOLA and NROWB as the number of rows and columns of A* and the number of rows of B respectively.* NOTA = LSAME(TRANSA,'N') NOTB = LSAME(TRANSB,'N') CONJA = LSAME(TRANSA,'C') CONJB = LSAME(TRANSB,'C') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF** Test the input parameters.* INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. + (.NOT.LSAME(TRANSA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. + (.NOT.LSAME(TRANSB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGEMM ',INFO) RETURN END IF** Quick return if possible.* IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN** And when alpha.eq.zero.* IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF** Start the operations.* IF (NOTB) THEN IF (NOTA) THEN** Form C := alpha*A*B + beta*C.* DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE IF (CONJA) THEN** Form C := alpha*conjg( A' )*B + beta*C.* DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + CONJG(A(L,I))*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE ELSE** Form C := alpha*A'*B + beta*C* DO 150 J = 1,N DO 140 I = 1,M TEMP = ZERO DO 130 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 130 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 140 CONTINUE 150 CONTINUE END IF ELSE IF (NOTA) THEN IF (CONJB) THEN** Form C := alpha*A*conjg( B' ) + beta*C.* DO 200 J = 1,N IF (BETA.EQ.ZERO) THEN DO 160 I = 1,M C(I,J) = ZERO 160 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 170 I = 1,M C(I,J) = BETA*C(I,J) 170 CONTINUE END IF DO 190 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*CONJG(B(J,L)) DO 180 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE** Form C := alpha*A*B' + beta*C* DO 250 J = 1,N IF (BETA.EQ.ZERO) THEN DO 210 I = 1,M C(I,J) = ZERO 210 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 220 I = 1,M C(I,J) = BETA*C(I,J) 220 CONTINUE END IF DO 240 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 230 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 230 CONTINUE END IF 240 CONTINUE 250 CONTINUE END IF ELSE IF (CONJA) THEN IF (CONJB) THEN** Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.* DO 280 J = 1,N DO 270 I = 1,M TEMP = ZERO DO 260 L = 1,K TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L)) 260 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 270 CONTINUE 280 CONTINUE ELSE** Form C := alpha*conjg( A' )*B' + beta*C* DO 310 J = 1,N DO 300 I = 1,M TEMP = ZERO DO 290 L = 1,K TEMP = TEMP + CONJG(A(L,I))*B(J,L) 290 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 300 CONTINUE 310 CONTINUE END IF ELSE IF (CONJB) THEN** Form C := alpha*A'*conjg( B' ) + beta*C* DO 340 J = 1,N DO 330 I = 1,M TEMP = ZERO DO 320 L = 1,K TEMP = TEMP + A(L,I)*CONJG(B(J,L)) 320 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 330 CONTINUE 340 CONTINUE ELSE** Form C := alpha*A'*B' + beta*C* DO 370 J = 1,N DO 360 I = 1,M TEMP = ZERO DO 350 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 350 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 360 CONTINUE 370 CONTINUE END IF END IF* RETURN** End of CGEMM .* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -