⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsbmv.f

📁 贝尔实验室多年开发的矩阵计算程序库的说明文件
💻 F
字号:
      SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)*     .. Scalar Arguments ..      DOUBLE PRECISION ALPHA,BETA      INTEGER INCX,INCY,K,LDA,N      CHARACTER UPLO*     ..*     .. Array Arguments ..      DOUBLE PRECISION A(LDA,*),X(*),Y(*)*     ..**  Purpose*  =======**  DSBMV  performs the matrix-vector  operation**     y := alpha*A*x + beta*y,**  where alpha and beta are scalars, x and y are n element vectors and*  A is an n by n symmetric band matrix, with k super-diagonals.**  Arguments*  ==========**  UPLO   - CHARACTER*1.*           On entry, UPLO specifies whether the upper or lower*           triangular part of the band matrix A is being supplied as*           follows:**              UPLO = 'U' or 'u'   The upper triangular part of A is*                                  being supplied.**              UPLO = 'L' or 'l'   The lower triangular part of A is*                                  being supplied.**           Unchanged on exit.**  N      - INTEGER.*           On entry, N specifies the order of the matrix A.*           N must be at least zero.*           Unchanged on exit.**  K      - INTEGER.*           On entry, K specifies the number of super-diagonals of the*           matrix A. K must satisfy  0 .le. K.*           Unchanged on exit.**  ALPHA  - DOUBLE PRECISION.*           On entry, ALPHA specifies the scalar alpha.*           Unchanged on exit.**  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )*           by n part of the array A must contain the upper triangular*           band part of the symmetric matrix, supplied column by*           column, with the leading diagonal of the matrix in row*           ( k + 1 ) of the array, the first super-diagonal starting at*           position 2 in row k, and so on. The top left k by k triangle*           of the array A is not referenced.*           The following program segment will transfer the upper*           triangular part of a symmetric band matrix from conventional*           full matrix storage to band storage:**                 DO 20, J = 1, N*                    M = K + 1 - J*                    DO 10, I = MAX( 1, J - K ), J*                       A( M + I, J ) = matrix( I, J )*              10    CONTINUE*              20 CONTINUE**           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )*           by n part of the array A must contain the lower triangular*           band part of the symmetric matrix, supplied column by*           column, with the leading diagonal of the matrix in row 1 of*           the array, the first sub-diagonal starting at position 1 in*           row 2, and so on. The bottom right k by k triangle of the*           array A is not referenced.*           The following program segment will transfer the lower*           triangular part of a symmetric band matrix from conventional*           full matrix storage to band storage:**                 DO 20, J = 1, N*                    M = 1 - J*                    DO 10, I = J, MIN( N, J + K )*                       A( M + I, J ) = matrix( I, J )*              10    CONTINUE*              20 CONTINUE**           Unchanged on exit.**  LDA    - INTEGER.*           On entry, LDA specifies the first dimension of A as declared*           in the calling (sub) program. LDA must be at least*           ( k + 1 ).*           Unchanged on exit.**  X      - DOUBLE PRECISION array of DIMENSION at least*           ( 1 + ( n - 1 )*abs( INCX ) ).*           Before entry, the incremented array X must contain the*           vector x.*           Unchanged on exit.**  INCX   - INTEGER.*           On entry, INCX specifies the increment for the elements of*           X. INCX must not be zero.*           Unchanged on exit.**  BETA   - DOUBLE PRECISION.*           On entry, BETA specifies the scalar beta.*           Unchanged on exit.**  Y      - DOUBLE PRECISION array of DIMENSION at least*           ( 1 + ( n - 1 )*abs( INCY ) ).*           Before entry, the incremented array Y must contain the*           vector y. On exit, Y is overwritten by the updated vector y.**  INCY   - INTEGER.*           On entry, INCY specifies the increment for the elements of*           Y. INCY must not be zero.*           Unchanged on exit.***  Level 2 Blas routine.**  -- Written on 22-October-1986.*     Jack Dongarra, Argonne National Lab.*     Jeremy Du Croz, Nag Central Office.*     Sven Hammarling, Nag Central Office.*     Richard Hanson, Sandia National Labs.***     .. Parameters ..      DOUBLE PRECISION ONE,ZERO      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)*     ..*     .. Local Scalars ..      DOUBLE PRECISION TEMP1,TEMP2      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L*     ..*     .. External Functions ..      LOGICAL LSAME      EXTERNAL LSAME*     ..*     .. External Subroutines ..      EXTERNAL XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC MAX,MIN*     ..**     Test the input parameters.*      INFO = 0      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN          INFO = 1      ELSE IF (N.LT.0) THEN          INFO = 2      ELSE IF (K.LT.0) THEN          INFO = 3      ELSE IF (LDA.LT. (K+1)) THEN          INFO = 6      ELSE IF (INCX.EQ.0) THEN          INFO = 8      ELSE IF (INCY.EQ.0) THEN          INFO = 11      END IF      IF (INFO.NE.0) THEN          CALL XERBLA('DSBMV ',INFO)          RETURN      END IF**     Quick return if possible.*      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN**     Set up the start points in  X  and  Y.*      IF (INCX.GT.0) THEN          KX = 1      ELSE          KX = 1 - (N-1)*INCX      END IF      IF (INCY.GT.0) THEN          KY = 1      ELSE          KY = 1 - (N-1)*INCY      END IF**     Start the operations. In this version the elements of the array A*     are accessed sequentially with one pass through A.**     First form  y := beta*y.*      IF (BETA.NE.ONE) THEN          IF (INCY.EQ.1) THEN              IF (BETA.EQ.ZERO) THEN                  DO 10 I = 1,N                      Y(I) = ZERO   10             CONTINUE              ELSE                  DO 20 I = 1,N                      Y(I) = BETA*Y(I)   20             CONTINUE              END IF          ELSE              IY = KY              IF (BETA.EQ.ZERO) THEN                  DO 30 I = 1,N                      Y(IY) = ZERO                      IY = IY + INCY   30             CONTINUE              ELSE                  DO 40 I = 1,N                      Y(IY) = BETA*Y(IY)                      IY = IY + INCY   40             CONTINUE              END IF          END IF      END IF      IF (ALPHA.EQ.ZERO) RETURN      IF (LSAME(UPLO,'U')) THEN**        Form  y  when upper triangle of A is stored.*          KPLUS1 = K + 1          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN              DO 60 J = 1,N                  TEMP1 = ALPHA*X(J)                  TEMP2 = ZERO                  L = KPLUS1 - J                  DO 50 I = MAX(1,J-K),J - 1                      Y(I) = Y(I) + TEMP1*A(L+I,J)                      TEMP2 = TEMP2 + A(L+I,J)*X(I)   50             CONTINUE                  Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2   60         CONTINUE          ELSE              JX = KX              JY = KY              DO 80 J = 1,N                  TEMP1 = ALPHA*X(JX)                  TEMP2 = ZERO                  IX = KX                  IY = KY                  L = KPLUS1 - J                  DO 70 I = MAX(1,J-K),J - 1                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)                      IX = IX + INCX                      IY = IY + INCY   70             CONTINUE                  Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2                  JX = JX + INCX                  JY = JY + INCY                  IF (J.GT.K) THEN                      KX = KX + INCX                      KY = KY + INCY                  END IF   80         CONTINUE          END IF      ELSE**        Form  y  when lower triangle of A is stored.*          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN              DO 100 J = 1,N                  TEMP1 = ALPHA*X(J)                  TEMP2 = ZERO                  Y(J) = Y(J) + TEMP1*A(1,J)                  L = 1 - J                  DO 90 I = J + 1,MIN(N,J+K)                      Y(I) = Y(I) + TEMP1*A(L+I,J)                      TEMP2 = TEMP2 + A(L+I,J)*X(I)   90             CONTINUE                  Y(J) = Y(J) + ALPHA*TEMP2  100         CONTINUE          ELSE              JX = KX              JY = KY              DO 120 J = 1,N                  TEMP1 = ALPHA*X(JX)                  TEMP2 = ZERO                  Y(JY) = Y(JY) + TEMP1*A(1,J)                  L = 1 - J                  IX = JX                  IY = JY                  DO 110 I = J + 1,MIN(N,J+K)                      IX = IX + INCX                      IY = IY + INCY                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)  110             CONTINUE                  Y(JY) = Y(JY) + ALPHA*TEMP2                  JX = JX + INCX                  JY = JY + INCY  120         CONTINUE          END IF      END IF*      RETURN**     End of DSBMV .*      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -