📄 dtrsm.f
字号:
SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)* .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO* ..* .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*)* ..** Purpose* =======** DTRSM solves one of the matrix equations** op( A )*X = alpha*B, or X*op( A ) = alpha*B,** where alpha is a scalar, X and B are m by n matrices, A is a unit, or* non-unit, upper or lower triangular matrix and op( A ) is one of** op( A ) = A or op( A ) = A'.** The matrix X is overwritten on B.** Arguments* ==========** SIDE - CHARACTER*1.* On entry, SIDE specifies whether op( A ) appears on the left* or right of X as follows:** SIDE = 'L' or 'l' op( A )*X = alpha*B.** SIDE = 'R' or 'r' X*op( A ) = alpha*B.** Unchanged on exit.** UPLO - CHARACTER*1.* On entry, UPLO specifies whether the matrix A is an upper or* lower triangular matrix as follows:** UPLO = 'U' or 'u' A is an upper triangular matrix.** UPLO = 'L' or 'l' A is a lower triangular matrix.** Unchanged on exit.** TRANSA - CHARACTER*1.* On entry, TRANSA specifies the form of op( A ) to be used in* the matrix multiplication as follows:** TRANSA = 'N' or 'n' op( A ) = A.** TRANSA = 'T' or 't' op( A ) = A'.** TRANSA = 'C' or 'c' op( A ) = A'.** Unchanged on exit.** DIAG - CHARACTER*1.* On entry, DIAG specifies whether or not A is unit triangular* as follows:** DIAG = 'U' or 'u' A is assumed to be unit triangular.** DIAG = 'N' or 'n' A is not assumed to be unit* triangular.** Unchanged on exit.** M - INTEGER.* On entry, M specifies the number of rows of B. M must be at* least zero.* Unchanged on exit.** N - INTEGER.* On entry, N specifies the number of columns of B. N must be* at least zero.* Unchanged on exit.** ALPHA - DOUBLE PRECISION.* On entry, ALPHA specifies the scalar alpha. When alpha is* zero then A is not referenced and B need not be set before* entry.* Unchanged on exit.** A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.* Before entry with UPLO = 'U' or 'u', the leading k by k* upper triangular part of the array A must contain the upper* triangular matrix and the strictly lower triangular part of* A is not referenced.* Before entry with UPLO = 'L' or 'l', the leading k by k* lower triangular part of the array A must contain the lower* triangular matrix and the strictly upper triangular part of* A is not referenced.* Note that when DIAG = 'U' or 'u', the diagonal elements of* A are not referenced either, but are assumed to be unity.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. When SIDE = 'L' or 'l' then* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'* then LDA must be at least max( 1, n ).* Unchanged on exit.** B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).* Before entry, the leading m by n part of the array B must* contain the right-hand side matrix B, and on exit is* overwritten by the solution matrix X.** LDB - INTEGER.* On entry, LDB specifies the first dimension of B as declared* in the calling (sub) program. LDB must be at least* max( 1, m ).* Unchanged on exit.*** Level 3 Blas routine.*** -- Written on 8-February-1989.* Jack Dongarra, Argonne National Laboratory.* Iain Duff, AERE Harwell.* Jeremy Du Croz, Numerical Algorithms Group Ltd.* Sven Hammarling, Numerical Algorithms Group Ltd.*** .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* ..* .. External Subroutines .. EXTERNAL XERBLA* ..* .. Intrinsic Functions .. INTRINSIC MAX* ..* .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER* ..* .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)* ..** Test the input parameters.* LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U')* INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRSM ',INFO) RETURN END IF** Quick return if possible.* IF (M.EQ.0 .OR. N.EQ.0) RETURN** And when alpha.eq.zero.* IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF** Start the operations.* IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN** Form B := alpha*inv( A )*B.* IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE** Form B := alpha*inv( A' )*B.* IF (UPPER) THEN DO 130 J = 1,N DO 120 I = 1,M TEMP = ALPHA*B(I,J) DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) B(I,J) = TEMP 120 CONTINUE 130 CONTINUE ELSE DO 160 J = 1,N DO 150 I = M,1,-1 TEMP = ALPHA*B(I,J) DO 140 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 140 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) B(I,J) = TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN** Form B := alpha*B*inv( A ).* IF (UPPER) THEN DO 210 J = 1,N IF (ALPHA.NE.ONE) THEN DO 170 I = 1,M B(I,J) = ALPHA*B(I,J) 170 CONTINUE END IF DO 190 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 180 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 180 CONTINUE END IF 190 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 200 I = 1,M B(I,J) = TEMP*B(I,J) 200 CONTINUE END IF 210 CONTINUE ELSE DO 260 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 220 I = 1,M B(I,J) = ALPHA*B(I,J) 220 CONTINUE END IF DO 240 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 230 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 230 CONTINUE END IF 240 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 250 I = 1,M B(I,J) = TEMP*B(I,J) 250 CONTINUE END IF 260 CONTINUE END IF ELSE** Form B := alpha*B*inv( A' ).* IF (UPPER) THEN DO 310 K = N,1,-1 IF (NOUNIT) THEN TEMP = ONE/A(K,K) DO 270 I = 1,M B(I,K) = TEMP*B(I,K) 270 CONTINUE END IF DO 290 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = A(J,K) DO 280 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 280 CONTINUE END IF 290 CONTINUE IF (ALPHA.NE.ONE) THEN DO 300 I = 1,M B(I,K) = ALPHA*B(I,K) 300 CONTINUE END IF 310 CONTINUE ELSE DO 360 K = 1,N IF (NOUNIT) THEN TEMP = ONE/A(K,K) DO 320 I = 1,M B(I,K) = TEMP*B(I,K) 320 CONTINUE END IF DO 340 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = A(J,K) DO 330 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 330 CONTINUE END IF 340 CONTINUE IF (ALPHA.NE.ONE) THEN DO 350 I = 1,M B(I,K) = ALPHA*B(I,K) 350 CONTINUE END IF 360 CONTINUE END IF END IF END IF* RETURN** End of DTRSM .* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -