📄 ti.htm
字号:
<html xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv=Content-Type content="text/html; charset=GB2312">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 9">
<meta name=Originator content="Microsoft Word 9">
<link rel=File-List href="./ti.files/filelist.xml">
<link rel=Edit-Time-Data href="./ti.files/editdata.mso">
<link rel=OLE-Object-Data href="./ti.files/oledata.mso">
<!--[if !mso]>
<style>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style>
<![endif]-->
<title>组合数学</title>
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Author>9_408</o:Author>
<o:LastAuthor>9_408</o:LastAuthor>
<o:Revision>8</o:Revision>
<o:TotalTime>62</o:TotalTime>
<o:Created>2001-12-11T00:41:00Z</o:Created>
<o:LastSaved>2001-12-11T01:14:00Z</o:LastSaved>
<o:Pages>4</o:Pages>
<o:Words>1315</o:Words>
<o:Characters>7498</o:Characters>
<o:Company>TsingHua CS </o:Company>
<o:Lines>62</o:Lines>
<o:Paragraphs>14</o:Paragraphs>
<o:CharactersWithSpaces>9208</o:CharactersWithSpaces>
<o:Version>9.2812</o:Version>
</o:DocumentProperties>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:WordDocument>
<w:Zoom>75</w:Zoom>
<w:DrawingGridVerticalSpacing>7.8 磅</w:DrawingGridVerticalSpacing>
<w:Compatibility>
<w:UseFELayout/>
</w:Compatibility>
</w:WordDocument>
</xml><![endif]-->
<link rel=Stylesheet type="text/css" media=all href="..\style.css">
<style>
<!--
/* Font Definitions */
@font-face
{font-family:宋体;
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-alt:SimSun;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:3 135135232 16 0 262145 0;}
@font-face
{font-family:"\@宋体";
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:3 135135232 16 0 262145 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0cm;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:宋体;
mso-bidi-font-family:"Times New Roman";}
h1
{margin-right:0cm;
margin-top:3.0pt;
mso-margin-bottom-alt:auto;
margin-left:178.5pt;
mso-pagination:widow-orphan;
mso-outline-level:1;
font-size:18.0pt;
font-family:宋体;
mso-font-kerning:18.0pt;
font-weight:bold;}
h4
{margin-right:0cm;
mso-margin-top-alt:auto;
margin-bottom:7.2pt;
margin-left:0cm;
mso-pagination:widow-orphan;
mso-outline-level:4;
font-size:13.0pt;
font-family:宋体;
font-weight:bold;}
a:link, span.MsoHyperlink
{mso-ansi-font-size:12.0pt;
mso-bidi-font-size:12.0pt;
color:#FF6600;
text-decoration:underline;
text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
{color:purple;
text-decoration:underline;
text-underline:single;}
p
{margin-top:7.2pt;
margin-right:0cm;
margin-bottom:7.2pt;
margin-left:0cm;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:宋体;
mso-bidi-font-family:"Times New Roman";}
code
{mso-ansi-font-size:12.0pt;
mso-bidi-font-size:12.0pt;
mso-ascii-font-family:宋体;
mso-fareast-font-family:宋体;
mso-hansi-font-family:宋体;
mso-bidi-font-family:"Courier New";}
pre
{margin:0cm;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt;
font-size:12.0pt;
font-family:宋体;
mso-bidi-font-family:"Courier New";}
span.1
{mso-style-name:超级链接1;
mso-ansi-font-size:12.0pt;
mso-bidi-font-size:12.0pt;
color:#FF6600;
text-decoration:underline;
text-underline:single;}
span.2
{mso-style-name:超级链接2;
mso-ansi-font-size:12.0pt;
mso-bidi-font-size:12.0pt;
color:#FF6600;
text-decoration:underline;
text-underline:single;}
span.3
{mso-style-name:超级链接3;
mso-ansi-font-size:12.0pt;
mso-bidi-font-size:12.0pt;
color:#FF6600;
text-decoration:underline;
text-underline:single;}
/* Page Definitions */
@page
{mso-page-border-surround-header:no;
mso-page-border-surround-footer:no;}
@page Section1
{size:595.3pt 841.9pt;
margin:72.0pt 90.0pt 72.0pt 90.0pt;
mso-header-margin:42.55pt;
mso-footer-margin:49.6pt;
mso-paper-source:0;}
div.Section1
{page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1086"/>
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1"/>
</o:shapelayout></xml><![endif]-->
</head>
<body bgcolor=white lang=ZH-CN link="#ff6600" vlink=purple style='tab-interval:
21.0pt'>
<div class=Section1>
<p><span lang=EN-US style='font-size:10.0pt'>1.证任一正整数n可唯一地表成如下形式:<img width=69
height=36 id="_x0000_i1025" src="1\image002.gif" align=middle>,0≤a<sub>i</sub>≤i,i=1,2,…。<br>
证:对n用归纳法。<o:p></o:p></span></p>
<p><span style='font-size:10.0pt'>先证可表示性:当<span lang=EN-US>n=0,1时,命题成立。<br>
假设对小于n的非负整数,命题成立。 <br>
对于n,设k!≤n<(k+1)!,即0≤n-k!<k·k! <br>
由假设对n-k!,命题成立,设<img width=103 height=45 id="_x0000_i1026"
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -