⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ti.htm

📁 组合数学 清华大学研究生课程课件 呵呵
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<html xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=Content-Type content="text/html; charset=GB2312">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 9">
<meta name=Originator content="Microsoft Word 9">
<link rel=File-List href="./ti.files/filelist.xml">
<link rel=Edit-Time-Data href="./ti.files/editdata.mso">
<link rel=OLE-Object-Data href="./ti.files/oledata.mso">
<!--[if !mso]>
<style>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style>
<![endif]-->
<title>组合数学</title>
<!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Author>9_408</o:Author>
  <o:LastAuthor>9_408</o:LastAuthor>
  <o:Revision>8</o:Revision>
  <o:TotalTime>62</o:TotalTime>
  <o:Created>2001-12-11T00:41:00Z</o:Created>
  <o:LastSaved>2001-12-11T01:14:00Z</o:LastSaved>
  <o:Pages>4</o:Pages>
  <o:Words>1315</o:Words>
  <o:Characters>7498</o:Characters>
  <o:Company>TsingHua CS </o:Company>
  <o:Lines>62</o:Lines>
  <o:Paragraphs>14</o:Paragraphs>
  <o:CharactersWithSpaces>9208</o:CharactersWithSpaces>
  <o:Version>9.2812</o:Version>
 </o:DocumentProperties>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:Zoom>75</w:Zoom>
  <w:DrawingGridVerticalSpacing>7.8 磅</w:DrawingGridVerticalSpacing>
  <w:Compatibility>
   <w:UseFELayout/>
  </w:Compatibility>
 </w:WordDocument>
</xml><![endif]-->
<link rel=Stylesheet type="text/css" media=all href="..\style.css">
<style>
<!--
 /* Font Definitions */
@font-face
	{font-family:宋体;
	panose-1:2 1 6 0 3 1 1 1 1 1;
	mso-font-alt:SimSun;
	mso-font-charset:134;
	mso-generic-font-family:auto;
	mso-font-pitch:variable;
	mso-font-signature:3 135135232 16 0 262145 0;}
@font-face
	{font-family:"\@宋体";
	panose-1:2 1 6 0 3 1 1 1 1 1;
	mso-font-charset:134;
	mso-generic-font-family:auto;
	mso-font-pitch:variable;
	mso-font-signature:3 135135232 16 0 262145 0;}
 /* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
	{mso-style-parent:"";
	margin:0cm;
	margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:宋体;
	mso-bidi-font-family:"Times New Roman";}
h1
	{margin-right:0cm;
	margin-top:3.0pt;
	mso-margin-bottom-alt:auto;
	margin-left:178.5pt;
	mso-pagination:widow-orphan;
	mso-outline-level:1;
	font-size:18.0pt;
	font-family:宋体;
	mso-font-kerning:18.0pt;
	font-weight:bold;}
h4
	{margin-right:0cm;
	mso-margin-top-alt:auto;
	margin-bottom:7.2pt;
	margin-left:0cm;
	mso-pagination:widow-orphan;
	mso-outline-level:4;
	font-size:13.0pt;
	font-family:宋体;
	font-weight:bold;}
a:link, span.MsoHyperlink
	{mso-ansi-font-size:12.0pt;
	mso-bidi-font-size:12.0pt;
	color:#FF6600;
	text-decoration:underline;
	text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
	{color:purple;
	text-decoration:underline;
	text-underline:single;}
p
	{margin-top:7.2pt;
	margin-right:0cm;
	margin-bottom:7.2pt;
	margin-left:0cm;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:宋体;
	mso-bidi-font-family:"Times New Roman";}
code
	{mso-ansi-font-size:12.0pt;
	mso-bidi-font-size:12.0pt;
	mso-ascii-font-family:宋体;
	mso-fareast-font-family:宋体;
	mso-hansi-font-family:宋体;
	mso-bidi-font-family:"Courier New";}
pre
	{margin:0cm;
	margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt;
	font-size:12.0pt;
	font-family:宋体;
	mso-bidi-font-family:"Courier New";}
span.1
	{mso-style-name:超级链接1;
	mso-ansi-font-size:12.0pt;
	mso-bidi-font-size:12.0pt;
	color:#FF6600;
	text-decoration:underline;
	text-underline:single;}
span.2
	{mso-style-name:超级链接2;
	mso-ansi-font-size:12.0pt;
	mso-bidi-font-size:12.0pt;
	color:#FF6600;
	text-decoration:underline;
	text-underline:single;}
span.3
	{mso-style-name:超级链接3;
	mso-ansi-font-size:12.0pt;
	mso-bidi-font-size:12.0pt;
	color:#FF6600;
	text-decoration:underline;
	text-underline:single;}
 /* Page Definitions */
@page
	{mso-page-border-surround-header:no;
	mso-page-border-surround-footer:no;}
@page Section1
	{size:595.3pt 841.9pt;
	margin:72.0pt 90.0pt 72.0pt 90.0pt;
	mso-header-margin:42.55pt;
	mso-footer-margin:49.6pt;
	mso-paper-source:0;}
div.Section1
	{page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
 <o:shapedefaults v:ext="edit" spidmax="1086"/>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <o:shapelayout v:ext="edit">
  <o:idmap v:ext="edit" data="1"/>
 </o:shapelayout></xml><![endif]-->
</head>

<body bgcolor=white lang=ZH-CN link="#ff6600" vlink=purple style='tab-interval:
21.0pt'>

<div class=Section1>

<p><span lang=EN-US style='font-size:10.0pt'>1.证任一正整数n可唯一地表成如下形式:<img width=69
height=36 id="_x0000_i1025" src="1\image002.gif" align=middle>,0≤a<sub>i</sub>≤i,i=1,2,…。<br>
证:对n用归纳法。<o:p></o:p></span></p>

<p><span style='font-size:10.0pt'>先证可表示性:当<span lang=EN-US>n=0,1时,命题成立。<br>
假设对小于n的非负整数,命题成立。 <br>
对于n,设k!≤n<(k+1)!,即0≤n-k!<k·k! <br>
由假设对n-k!,命题成立,设<img width=103 height=45 id="_x0000_i1026"

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -