⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 2_3.htm

📁 组合数学 清华大学研究生课程课件 呵呵
💻 HTM
字号:
<head><title>组合数学</title><meta http-equiv="Content-Type" content="text/html; charset=gb2312"><link rel="stylesheet" href="../style.css"></head><h1>§2.3  母函数的性质&nbsp;</h1><p>&nbsp;&nbsp;&nbsp; 一个序列和它的母函数一一对应。给了序列便得知它的母函数;反之,求得母函数序列也随之而定。这种关系颇像数学中的积分变换,特别酷似离散序列的Z变换。如§2的例子所示的那样,为了求满足某种第推关系的序列,可把它转换为求对应的母函数G(x),G(x)可能满足一代数方程,或代数方程组,甚至于是微分方程。&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 最后求逆变换,即从已求得的母函数G(x)得到序列{a<sub>n</sub>} 。关键在于要搭起从序列到母函数,从母函数到序列这两座桥。这一节便是以此为目的的。不特别说明下面假设{a<sub>k</sub>}、{a<sub>k</sub>}两个序列对应的母函数分别为A(x)、B(x)&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 性质1:若&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image008.gif" width="107" height="51"></p><p>则 B(x)=x<sup>l</sup>A(x)</p><p>&nbsp;&nbsp;&nbsp; 证:&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image012.gif" width="253" height="77"></p><p>&nbsp;&nbsp;&nbsp; 例.  已知&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image014.gif" width="201" height="44"></p>  </blockquote></blockquote><p>则&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image016.gif" width="276" height="44"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 性质2:若 b<sub>k</sub>=a<sub>k+l</sub>,&nbsp;</p><p>则&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image020.gif" width="175" height="45"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 证:&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image022.gif" width="192" height="25"></p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image024.gif" width="323" height="141"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 例.&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image026.gif" width="196" height="44"></p>    <p><img border="0" src="2_3.pic/image028.gif" width="220" height="85"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 性质3:若&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image030.gif" width="68" height="45">,</p>  </blockquote></blockquote><p>则&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image032.gif" width="84" height="41"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 证:&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image034.gif" width="205" height="147"></p>    <p><img border="0" src="2_3.pic/image036.gif" width="231" height="7"></p>    <p><img border="0" src="2_3.pic/image038.gif" width="316" height="51"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 例. 已知&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image040.gif" width="240" height="41"></p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image042.gif" width="253" height="44"></p>    <p><img border="0" src="2_3.pic/image044.gif" width="143" height="45"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 类似可得:</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image046.gif" width="241" height="125">&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 性质4:若&nbsp;</p><blockquote>  <blockquote>    <blockquote>      <p><img border="0" src="2_3.pic/image048.gif" width="39" height="45"></p>    </blockquote>  </blockquote></blockquote><p>收敛,则&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image050.gif" width="132" height="41"></p><p>&nbsp;&nbsp;&nbsp; 性质5.  若b<sub>k</sub>=ka<sub>k</sub>,则 <img border="0" src="2_3.pic/image061.gif" width="88" height="24">。&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 例.&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image063.gif" width="180" height="41"></p><p>则&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image065.gif" width="247" height="47"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 性质6.  若&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image067.gif" width="65" height="41">,</p>  </blockquote></blockquote><p>则&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image069.gif" width="121" height="41"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 性质5和性质6的结论是显而易见的。&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 性质7.  若 <img border="0" src="2_3.pic/image071.gif" width="231" height="24"><img border="0" src="2_3.pic/image073.gif" width="71" height="45"></p><p>则 <img border="0" src="2_3.pic/image075.gif" width="240" height="25"></p><p>&nbsp;&nbsp;&nbsp; 证:&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_3.pic/image077.gif" width="271" height="248"></p><p>&nbsp;&nbsp;&nbsp; 例.  已知&nbsp;</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image079.gif" width="228" height="132"></p>  </blockquote></blockquote><p>&nbsp;&nbsp;&nbsp; 则</p><blockquote>  <blockquote>    <p><img border="0" src="2_3.pic/image081.gif" width="96" height="45"></p>  </blockquote></blockquote>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -