📄 timu.htm
字号:
<p><span lang=EN-US> <img width=149
height=61 id="_x0000_i1101" src="timu.files\timu.h89.gif" border=0></span></p>
<p>设<span lang=EN-US> <img width=64 height=21
id="_x0000_i1102" src="timu.files\timu.h90.gif" border=0><span
style="mso-spacerun: yes"> </span>代入得</span></p>
<p><span lang=EN-US> <img width=77
height=74 id="_x0000_i1103" src="timu.files\timu.h91.gif" border=0></span></p>
<p><span lang=EN-US> <img width=240
height=38 id="_x0000_i1104" src="timu.files\timu.h92.gif" border=0></span></p>
<p><span lang=EN-US>20. 在n个文字,长度为k的允许重复的排列中,不允许一个文字连续出现三次,求这样的排列的数目。 </span></p>
<p>解:设所求为<span lang=EN-US>a<sub>k</sub>则 </span></p>
<p><span lang=EN-US> <img width=182
height=44 id="_x0000_i1105" src="timu.files\timu.h93.gif" border=0></span></p>
<p>特征方程为<span lang=EN-US> <img width=133 height=20 id="_x0000_i1106"
src="timu.files\timu.h94.gif" border=0></span></p>
<p>解得<span lang=EN-US> <img width=148 height=38 id="_x0000_i1107"
src="timu.files\timu.h95.gif" border=0></span></p>
<p>可设<span lang=EN-US> <img width=91 height=20 id="_x0000_i1108"
src="timu.files\timu.h96.gif" border=0></span></p>
<p>代入初值可解出<span lang=EN-US>A、B</span></p>
<p> </p>
<p><span lang=EN-US>21. 求1<sup>4</sup>+2<sup>4</sup>+3<sup>4</sup>+<sup>...</sup>+n<sup>4</sup>的和。 </span></p>
<p>解: <span lang=EN-US><img width=155 height=21 id="_x0000_i1109"
src="timu.files\timu.h97.gif" border=0><span style="mso-spacerun:
yes"> </span>是n的4次方 </span></p>
<p><span lang=EN-US><!--[if gte vml 1]><v:shape id="_x0000_i1493" type="#_x0000_t75"
alt="" style='width:26.4pt;height:15pt' o:bullet="t">
<v:imagedata src="timu.files\timu.h98.gif"/>
</v:shape><![endif]--><![if !vml]><img width=35 height=20
src="timu.files\timu.h98.gif" border=0 v:shapes="_x0000_i1493"><![endif]>满足第推关系 </span></p>
<p><span lang=EN-US> <img width=196
height=41 id="_x0000_i1490" src="timu.files\timu.h99.gif" border=0></span></p>
<p>设<span lang=EN-US> <img width=245 height=41 id="_x0000_i1112"
src="timu.files\timu.h1.gif" border=0></span></p>
<p>代入可解得</p>
<p><span lang=EN-US> <img width=234
height=147 id="_x0000_i1113" src="timu.files\timu.h2.gif" border=0></span></p>
<p><span lang=EN-US>22. 求矩阵 <span style='mso-text-raise:-15.0pt'><!--[if gte vml 1]><v:shape
id="_x0000_i1523" type="#_x0000_t75" style='width:55.8pt;height:39pt' o:ole="">
<v:imagedata src="./timu.files/image062.wmz" o:title=""/>
</v:shape><![endif]--><![if !vml]><img width=74 height=52
src="./timu.files/image063.gif" v:shapes="_x0000_i1523"><![endif]></span><!--[if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1523"
DrawAspect="Content" ObjectID="_1069585714">
</o:OLEObject>
</xml><![endif]--></span></p>
<p><span lang=EN-US> 解: 由矩阵的结构知 </span></p>
<p><span lang=EN-US> <img width=134
height=44 id="_x0000_i1115" src="timu.files\timu.h3.gif" border=0></span></p>
<p>只要求出<span lang=EN-US>K(n)即可 </span></p>
<p><span lang=EN-US> <img width=210
height=90 id="_x0000_i1116" src="timu.files\timu.h4.gif" border=0></span></p>
<p>可解得</p>
<p><span lang=EN-US> <img width=112
height=43 id="_x0000_i1117" src="timu.files\timu.h5.gif" border=0></span></p>
<p><span lang=EN-US>23. 求<span style='mso-text-raise:-14.0pt'><!--[if gte vml 1]><v:shape
id="_x0000_i1515" type="#_x0000_t75" style='width:79.8pt;height:34.2pt' o:ole="">
<v:imagedata src="./timu.files/image064.wmz" o:title=""/>
</v:shape><![endif]--><![if !vml]><img width=106 height=46
src="./timu.files/image065.gif" v:shapes="_x0000_i1515"><![endif]></span><!--[if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1515"
DrawAspect="Content" ObjectID="_1069585716">
</o:OLEObject>
</xml><![endif]--><span style='mso-text-raise:-14.0pt'><!--[if gte vml 1]><v:shape
id="_x0000_i1516" type="#_x0000_t75" style='width:82.2pt;height:34.2pt' o:ole="">
<v:imagedata src="./timu.files/image066.wmz" o:title=""/>
</v:shape><![endif]--><![if !vml]><img width=110 height=46
src="./timu.files/image067.gif" v:shapes="_x0000_i1516"><![endif]></span><!--[if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1516"
DrawAspect="Content" ObjectID="_1069585717">
</o:OLEObject>
</xml><![endif]--><span style='mso-text-raise:-14.0pt'><!--[if gte vml 1]><v:shape
id="_x0000_i1517" type="#_x0000_t75" style='width:112.8pt;height:34.2pt'
o:ole="">
<v:imagedata src="./timu.files/image068.wmz" o:title=""/>
</v:shape><![endif]--><![if !vml]><img width=150 height=46
src="./timu.files/image069.gif" v:shapes="_x0000_i1517"><![endif]></span><!--[if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1517"
DrawAspect="Content" ObjectID="_1069585718">
</o:OLEObject>
</xml><![endif]--></span></p>
<p>解:只求<span lang=EN-US> <img width=123 height=38 id="_x0000_i1119"
src="timu.files\timu.h6.gif" border=0>,</span></p>
<p>其他两式 同理可解。<span lang=EN-US> </span></p>
<p><span lang=EN-US> <img width=139
height=43 id="_x0000_i1120" src="timu.files\timu.h7.gif" border=0></span></p>
<p>可设<span lang=EN-US> <img width=212 height=41 id="_x0000_i1121"
src="timu.files\timu.h8.gif" border=0></span></p>
<p>把初值代入可的方程组:<span lang=EN-US> </span></p>
<p><span lang=EN-US> <img width=208
height=104 id="_x0000_i1122" src="timu.files\timu.h9.gif" border=0></span></p>
<p>解得:</p>
<p><span lang=EN-US> <img width=181
height=147 id="_x0000_i1123" src="timu.files\timu.h10.gif" border=0></span></p>
<p><span lang=EN-US>24. 在一个平面上画一个圆,然后一条一条地画n条与圆相交的直线。当r是大于1的奇数时,第r条直线只与前r-1条直线之一在圆内相交。当r是偶数时,第r条直线与前r-1条直线在圆内部相交。如果无3条直线在圆内共点,这n条直线把圆分割成多少个不重叠的部分? </span></p>
<p>解: 当<span lang=EN-US>r是奇数(>1)时 <img width=138
height=19 id="_x0000_i1124" src="timu.files\timu.h11.gif" border=0></span></p>
<p><span lang=EN-US> 当r是偶数时
<img width=181 height=19 id="_x0000_i1125" src="timu.files\timu.h12.gif"
border=0></span></p>
<p><span lang=EN-US> <img width=117
height=70 id="_x0000_i1126" src="timu.files\timu.h13.gif" border=0></span></p>
<p><span lang=EN-US>25. 用a<sub>n</sub>记具有整数边长周长为n的三角形的个数。 </span></p>
<p style='margin-left:36.0pt;text-indent:-36.0pt;mso-list:l1 level1 lfo2;
tab-stops:list 36.0pt'><![if !supportLists]><span lang=EN-US>(a)<span
style='font:7.0pt "Times New Roman"'> </span></span><![endif]>证明<span
lang=EN-US> <span style='mso-text-raise:-26.0pt'><!--[if gte vml 1]><v:shape
id="_x0000_i1600" type="#_x0000_t75" style='width:163.2pt;height:58.2pt'
o:ole="">
<v:imagedata src="./timu.files/image070.wmz" o:title=""/>
</v:shape><![endif]--><![if !vml]><img width=218 height=78
src="./timu.files/image071.gif" v:shapes="_x0000_i1600"><![endif]></span><!--[if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1600"
DrawAspect="Content" ObjectID="_1069585719">
</o:OLEObject>
</xml><![endif]--></span></p>
<p style='margin-left:36.0pt;text-indent:-36.0pt;mso-list:l1 level1 lfo2;
tab-stops:list 36.0pt'><![if !supportLists]><span lang=EN-US>(b)<span
style='font:7.0pt "Times New Roman"'> </span></span><![endif]>求序列<span
lang=EN-US>{a<sub>n</sub>}的普通形母函数。</span></p>
<p>解:<span lang=EN-US>1) 当n是偶数时 ,对所有符合条件的a<sub>r-3</sub>来说,每边增加1各单位,则可构成符合条件的a<sub>r</sub>。 </span></p>
<p><span lang=EN-US> <img width=60
height=20 id="_x0000_i1128" src="timu.files\timu.h14.gif" border=0></span></p>
<p><span lang=EN-US> 设短边为a、b,长边为c,则(a+b)-c>=2即a+b-2>c-1,对所有符合条件的a<sub>r</sub>来说,每边减少1各单位,则可构成符合条件的a<sub>r-3</sub></span></p>
<p><span lang=EN-US> <img width=60
height=41 id="_x0000_i1129" src="timu.files\timu.h15.gif" border=0></span></p>
<p><span lang=EN-US> 2) 当n为奇数时 ,由I的讨论知,a<sub>r</sub>比a<sub>r-3</sub>多了a+b-c=1的三角形。 </span></p>
<p><span lang=EN-US> 而这种三角形可知 <img width=69
height=35 id="_x0000_i1130" src="timu.files\timu.h16.gif" border=0></span></p>
<p style='text-indent:21.0pt'>当 <span lang=EN-US><img width=29 height=35
id="_x0000_i1131" src="timu.files\timu.h17.gif" border=0>能被2整除时,这种三角形有 <img
width=29 height=35 id="_x0000_i1132" src="timu.files\timu.h17.gif" border=0>个 </span></p>
<p style='text-indent:21.0pt'>当 <span lang=EN-US><img width=29 height=36
id="_x0000_i1133" src="timu.files\timu.h17.gif" border=0>不能被2整除时,这种三角形有<img
width=29 height=36 id="_x0000_i1134" src="timu.files\timu.h18.gif" border=0>个 </span></p>
<p><span lang=EN-US> <img width=133
height=46 id="_x0000_i1135" src="timu.files\timu.h19.gif" border=0></span></p>
<p><span lang=EN-US> (2) 利用 <img width=244
height=47 id="_x0000_i1136" src="timu.files\timu.h20.gif" border=0></span></p>
<p><span lang=EN-US>26. (a)证明边长为整数、最大边长为l的三角形的个数是 <span
style='mso-text-raise:-28.0pt'><!--[if gte vml 1]><v:shape id="_x0000_i1538"
type="#_x0000_t75" style='width:109.8pt;height:61.8pt' o:ole="">
<v:imagedata src="./timu.files/image072.wmz" o:title=""/>
</v:shape><![endif]--><![if !vml]><img width=146 height=82
src="./timu.files/image073.gif" v:shapes="_x0000_i1538"><![endif]></span><!--[if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1538"
DrawAspect="Content" ObjectID="_1069585720">
</o:OLEObject>
</xml><![endif]--></span></p>
<p style='text-indent:24.0pt;mso-char-indent-count:2.0;mso-char-indent-size:
12.0pt'>(<span lang=EN-US>b)设f<sub>n</sub>记边长不超过2n的三角形的个数,而g<sub>n</sub>记边长不超过2n+1的三角形的个数,求f<sub>n</sub>和g<sub>n</sub>
的表达式。 </span></p>
<p>解:(<span lang=EN-US>a)l=1时,只有一种可能(即3边都是 长度为1)。 </span></p>
<p><span lang=EN-US> <img width=69
height=35 id="_x0000_i1138" src="timu.files\timu.h21.gif" border=0></span></p>
<p><span lang=EN-US> l=2时,有两种可能(即“1,2,2”、 “2,2,2”)。 </span></p>
<p><span lang=EN-US> <img width=82
height=35 id="_x0000_i1139" src="timu.files\timu.h22.gif" border=0></span></p>
<p>设三角形的<span lang=EN-US>3边边长为x、y、z, 且 <img width=130 height=19
id="_x0000_i1140" src="timu.files\timu.h23.gif" border=0>。</span></p>
<p><span lang=EN-US> l=2k+1时 </span></p>
<p><span lang=EN-US> x+y=2k+2时,有k+1种方案,即“1,2k+1”、“2,2k”、...…、“k+1,k+1”。 </span></p>
<p><span lang=EN-US> x+y=2k+3时,有k种方案,即“2,2k+1”、“3,2k”、...…、“k+1,k+2”。 </span></p>
<p><span lang=EN-US> x+y=2k+4时,有k种方案,即“3,2k+1”、“4,2k”、...…、“k+2,k+2”。 </span></p>
<p><span lang=EN-US> … … </span></p>
<p><span lang=EN-US> … … </span></p>
<p><span lang=EN-US> x+y=4k+1时,有1种方案,即“2k,2k+1”。 </span></p>
<p><span lang=EN-US> x+y=4k+2时,有1种方案,即“2k+1,2k+1”。 <o:p></o:p></span></p>
<p><span lang=EN-US><P:COLORSCHEME colors="#000066,#FFFFFF,#000000,#FFCC66,#FF9900,#000044,#3366FF,#FFFF00">
<img width=149 height=111 id="_x0000_i1141" src="timu.files\timu.h24.gif"
border=0></span></p>
<p><span lang=EN-US> l=2k时 </span></p>
<p><span lang=EN-US> x+y=2k+1时,有k种方案,即“1,2k”、“2,2k-1”、...…、“k,k+1”。 </span></p>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -