⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 2_5.htm

📁 组合数学 清华大学研究生课程课件 呵呵
💻 HTM
📖 第 1 页 / 共 2 页
字号:
<p>&nbsp;&nbsp;&nbsp; 例1:求下列n阶行列式d<sub>n</sub>的值。&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image155.gif" width="187" height="120"></p><p>&nbsp;&nbsp;&nbsp; 根据行列式性质</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image157.gif" width="237" height="24"></p><p>对应的特征方程为&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image159.gif" width="165" height="48"></p><p>   故m=1是二重根&nbsp;</p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image161.gif" width="195" height="25"></p><p>&nbsp;&nbsp;&nbsp; n=1时有&nbsp;d<sub>1</sub>=A+B=2</p><p>&nbsp;&nbsp;&nbsp; n=2时有&nbsp;d<sub>2</sub>=A+2B=3</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image167.gif" width="192" height="48"></p><p>即&nbsp;d<sub>n</sub>=n+1</p><p>&nbsp;&nbsp;&nbsp; 例2:求</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image171.gif" width="64" height="45"></p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image173.gif" width="197" height="53"></p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image175.gif" width="104" height="24"></p><p>同理&nbsp;</p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image177.gif" width="113" height="24"></p><p> 相减得&nbsp;</p><p> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image179.gif" width="129" height="24"></p><p> 同理&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image181.gif" width="139" height="24"></p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image183.gif" width="199" height="48"></p><p>对应的特征方程为:&nbsp;</p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image185.gif" width="204" height="24"></p><p> m=1三重根&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image187.gif" width="272" height="99"></p><p>即&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image189.gif" width="176" height="41"></p><p>这就证明了&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image191.gif" width="180" height="41"></p><p>&nbsp;&nbsp;&nbsp; 例2:求&nbsp;</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image193.gif" width="71" height="45"></p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image195.gif" width="235" height="77"></p><p>同理&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image197.gif" width="129" height="25"></p><p>相减得&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image199.gif" width="160" height="24"></p><p>   同理&nbsp;</p><p>   &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image201.gif" width="200" height="24"></p><p>   相减得&nbsp;</p><p>   &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image203.gif" width="179" height="24"></p><p>   同理&nbsp;</p><p>   &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image205.gif" width="189" height="24"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image207.gif" width="249" height="48"></p><p>   对应的特征方程为&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image209.gif" width="225" height="51"></p><p>r=1是四重根&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image211.gif" width="213" height="25"></p><p>依据&nbsp;</p><p>&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image213.gif" width="180" height="24"></p><p>得关于A、B、C、D的连立方程组:&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image215.gif" width="137" height="96"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image217.gif" width="101" height="75"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image219.gif" width="144" height="75"></p><p>&nbsp;&nbsp;&nbsp; 已知S<sub>n</sub> 是n的3次式,故不妨令&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image223.gif" width="295" height="41"></p><p>确定待定系数时,比较方便,无需解一联立方程组。&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 例如&nbsp;n=0时,S<sub>0</sub>=A=0</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image227.gif" width="283" height="73"></p><p><img border="0" src="2_5.pic/image229.gif" width="253" height="85"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 例4:求&nbsp;</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image231.gif" width="132" height="25"></p><p>&nbsp;&nbsp;&nbsp; 解:&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image233.gif" width="160" height="25"></p><p>是n的3次多项式,因此S<sub>n</sub>是满足递推关系:&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image236.gif" width="288" height="24"></p><p>设&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image238.gif" width="245" height="48"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image240.gif" width="284" height="175"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image242.gif" width="223" height="48"></p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p><p>&nbsp;&nbsp;&nbsp; 以n=5对上面的结果验证一下&nbsp;</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img border="0" src="2_5.pic/image244.gif" width="168" height="96"></p><p>&nbsp;&nbsp;&nbsp; 例5:求&nbsp;</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image246.gif" width="189" height="44"></p><p>中x<sup>n</sup> 的a<sup>n</sup> 系数。&nbsp;</p> <p>&nbsp;&nbsp;&nbsp; 解:{a<sup>n</sup>} 的特征多项式是&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image253.gif" width="156" height="24"></p><p>x=1是3重根&nbsp;</p><p>x=-1是1重根&nbsp;</p><p>x<sup>2</sup>+x+1=0&nbsp;的根是&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image257.gif" width="208" height="45"></p><p>因此可设&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image259.gif" width="199" height="93"></p><p>通过做长除法,求得&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image261.gif" width="225" height="136"></p><p>可知&nbsp;</p><p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image263.gif" width="248" height="48"></p><p>利用a<sub>0</sub>,a<sub>`</sub>,a<sub>2</sub>,a<sub>3</sub>,a<sub>4</sub>,a<sub>5</sub> 的值解得A,B,C,D,E,F。 故&nbsp;</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img border="0" src="2_5.pic/image269.gif" width="263" height="93"></p><p>通过上式,计算得a<sub>6</sub>=7,a<sub>7</sub>=8,a<sub>8</sub>=10, 与用长除法得到的结果相同。</p> 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -