📄 schur.c
字号:
********************/
a00 = m_entry(A,k_min,k_min);
a01 = m_entry(A,k_min,k_tmp);
a10 = m_entry(A,k_tmp,k_min);
a11 = m_entry(A,k_tmp,k_tmp);
/********************
a00 = A->me[k_min][k_min];
a01 = A->me[k_min][k_tmp];
a10 = A->me[k_tmp][k_min];
a11 = A->me[k_tmp][k_tmp];
********************/
x = a00*a00 + a01*a10 - s*a00 + t;
y = a10*(a00+a11-s);
if ( k_min + 2 <= k_max )
z = a10* /* m_entry(A,k_min+2,k_tmp) */ A->me[k_min+2][k_tmp];
else
z = 0.0;
for ( k = k_min; k <= k_max-1; k++ )
{
if ( k < k_max - 1 )
{
hhldr3(x,y,z,&nu1,&beta2,&dummy);
tracecatch(hhldr3cols(A,k,max(k-1,0), beta2,nu1,y,z),"schur");
tracecatch(hhldr3rows(A,k,min(n-1,k+3),beta2,nu1,y,z),"schur");
if ( Q != MNULL )
hhldr3rows(Q,k,n-1,beta2,nu1,y,z);
}
else
{
givens(x,y,&c,&s);
rot_cols(A,k,k+1,c,s,A);
rot_rows(A,k,k+1,c,s,A);
if ( Q )
rot_cols(Q,k,k+1,c,s,Q);
}
/* if ( k >= 2 )
m_set_val(A,k,k-2,0.0); */
/* x = A_me[k+1][k]; */
x = m_entry(A,k+1,k);
if ( k <= k_max - 2 )
/* y = A_me[k+2][k];*/
y = m_entry(A,k+2,k);
else
y = 0.0;
if ( k <= k_max - 3 )
/* z = A_me[k+3][k]; */
z = m_entry(A,k+3,k);
else
z = 0.0;
}
/* if ( k_min > 0 )
m_set_val(A,k_min,k_min-1,0.0);
if ( k_max < n - 1 )
m_set_val(A,k_max+1,k_max,0.0); */
for ( k = k_min; k <= k_max-2; k++ )
{
/* zero appropriate sub-diagonals */
m_set_val(A,k+2,k,0.0);
if ( k < k_max-2 )
m_set_val(A,k+3,k,0.0);
}
/* test to see if matrix should split */
for ( k = k_min; k < k_max; k++ )
if ( fabs(A_me[k+1][k]) < MACHEPS*
(fabs(A_me[k][k])+fabs(A_me[k+1][k+1])) )
{ A_me[k+1][k] = 0.0; split = TRUE; }
}
}
/* polish up A by zeroing strictly lower triangular elements
and small sub-diagonal elements */
for ( i = 0; i < A->m; i++ )
for ( j = 0; j < i-1; j++ )
A_me[i][j] = 0.0;
for ( i = 0; i < A->m - 1; i++ )
if ( fabs(A_me[i+1][i]) < MACHEPS*
(fabs(A_me[i][i])+fabs(A_me[i+1][i+1])) )
A_me[i+1][i] = 0.0;
#ifdef THREADSAFE
V_FREE(diag); V_FREE(beta);
#endif
return A;
}
/* schur_vals -- compute real & imaginary parts of eigenvalues
-- assumes T contains a block upper triangular matrix
as produced by schur()
-- real parts stored in real_pt, imaginary parts in imag_pt */
#ifndef ANSI_C
void schur_evals(T,real_pt,imag_pt)
MAT *T;
VEC *real_pt, *imag_pt;
#else
void schur_evals(MAT *T, VEC *real_pt, VEC *imag_pt)
#endif
{
int i, n;
Real discrim, **T_me;
Real diff, sum, tmp;
if ( ! T || ! real_pt || ! imag_pt )
error(E_NULL,"schur_evals");
if ( T->m != T->n )
error(E_SQUARE,"schur_evals");
n = T->n; T_me = T->me;
real_pt = v_resize(real_pt,(unsigned int)n);
imag_pt = v_resize(imag_pt,(unsigned int)n);
i = 0;
while ( i < n )
{
if ( i < n-1 && T_me[i+1][i] != 0.0 )
{ /* should be a complex eigenvalue */
sum = 0.5*(T_me[i][i]+T_me[i+1][i+1]);
diff = 0.5*(T_me[i][i]-T_me[i+1][i+1]);
discrim = diff*diff + T_me[i][i+1]*T_me[i+1][i];
if ( discrim < 0.0 )
{ /* yes -- complex e-vals */
real_pt->ve[i] = real_pt->ve[i+1] = sum;
imag_pt->ve[i] = sqrt(-discrim);
imag_pt->ve[i+1] = - imag_pt->ve[i];
}
else
{ /* no -- actually both real */
tmp = sqrt(discrim);
real_pt->ve[i] = sum + tmp;
real_pt->ve[i+1] = sum - tmp;
imag_pt->ve[i] = imag_pt->ve[i+1] = 0.0;
}
i += 2;
}
else
{ /* real eigenvalue */
real_pt->ve[i] = T_me[i][i];
imag_pt->ve[i] = 0.0;
i++;
}
}
}
/* schur_vecs -- returns eigenvectors computed from the real Schur
decomposition of a matrix
-- T is the block upper triangular Schur matrix
-- Q is the orthognal matrix where A = Q.T.Q^T
-- if Q is null, the eigenvectors of T are returned
-- X_re is the real part of the matrix of eigenvectors,
and X_im is the imaginary part of the matrix.
-- X_re is returned */
#ifndef ANSI_C
MAT *schur_vecs(T,Q,X_re,X_im)
MAT *T, *Q, *X_re, *X_im;
#else
MAT *schur_vecs(MAT *T, MAT *Q, MAT *X_re, MAT *X_im)
#endif
{
int i, j, limit;
Real t11_re, t11_im, t12, t21, t22_re, t22_im;
Real l_re, l_im, det_re, det_im, invdet_re, invdet_im,
val1_re, val1_im, val2_re, val2_im,
tmp_val1_re, tmp_val1_im, tmp_val2_re, tmp_val2_im, **T_me;
Real sum, diff, discrim, magdet, norm, scale;
STATIC VEC *tmp1_re=VNULL, *tmp1_im=VNULL,
*tmp2_re=VNULL, *tmp2_im=VNULL;
if ( ! T || ! X_re )
error(E_NULL,"schur_vecs");
if ( T->m != T->n || X_re->m != X_re->n ||
( Q != MNULL && Q->m != Q->n ) ||
( X_im != MNULL && X_im->m != X_im->n ) )
error(E_SQUARE,"schur_vecs");
if ( T->m != X_re->m ||
( Q != MNULL && T->m != Q->m ) ||
( X_im != MNULL && T->m != X_im->m ) )
error(E_SIZES,"schur_vecs");
tmp1_re = v_resize(tmp1_re,T->m);
tmp1_im = v_resize(tmp1_im,T->m);
tmp2_re = v_resize(tmp2_re,T->m);
tmp2_im = v_resize(tmp2_im,T->m);
MEM_STAT_REG(tmp1_re,TYPE_VEC);
MEM_STAT_REG(tmp1_im,TYPE_VEC);
MEM_STAT_REG(tmp2_re,TYPE_VEC);
MEM_STAT_REG(tmp2_im,TYPE_VEC);
T_me = T->me;
i = 0;
while ( i < T->m )
{
if ( i+1 < T->m && T->me[i+1][i] != 0.0 )
{ /* complex eigenvalue */
sum = 0.5*(T_me[i][i]+T_me[i+1][i+1]);
diff = 0.5*(T_me[i][i]-T_me[i+1][i+1]);
discrim = diff*diff + T_me[i][i+1]*T_me[i+1][i];
l_re = l_im = 0.0;
if ( discrim < 0.0 )
{ /* yes -- complex e-vals */
l_re = sum;
l_im = sqrt(-discrim);
}
else /* not correct Real Schur form */
error(E_RANGE,"schur_vecs");
}
else
{
l_re = T_me[i][i];
l_im = 0.0;
}
v_zero(tmp1_im);
v_rand(tmp1_re);
sv_mlt(MACHEPS,tmp1_re,tmp1_re);
/* solve (T-l.I)x = tmp1 */
limit = ( l_im != 0.0 ) ? i+1 : i;
/* printf("limit = %d\n",limit); */
for ( j = limit+1; j < T->m; j++ )
tmp1_re->ve[j] = 0.0;
j = limit;
while ( j >= 0 )
{
if ( j > 0 && T->me[j][j-1] != 0.0 )
{ /* 2 x 2 diagonal block */
/* printf("checkpoint A\n"); */
val1_re = tmp1_re->ve[j-1] -
__ip__(&(tmp1_re->ve[j+1]),&(T->me[j-1][j+1]),limit-j);
/* printf("checkpoint B\n"); */
val1_im = tmp1_im->ve[j-1] -
__ip__(&(tmp1_im->ve[j+1]),&(T->me[j-1][j+1]),limit-j);
/* printf("checkpoint C\n"); */
val2_re = tmp1_re->ve[j] -
__ip__(&(tmp1_re->ve[j+1]),&(T->me[j][j+1]),limit-j);
/* printf("checkpoint D\n"); */
val2_im = tmp1_im->ve[j] -
__ip__(&(tmp1_im->ve[j+1]),&(T->me[j][j+1]),limit-j);
/* printf("checkpoint E\n"); */
t11_re = T_me[j-1][j-1] - l_re;
t11_im = - l_im;
t22_re = T_me[j][j] - l_re;
t22_im = - l_im;
t12 = T_me[j-1][j];
t21 = T_me[j][j-1];
scale = fabs(T_me[j-1][j-1]) + fabs(T_me[j][j]) +
fabs(t12) + fabs(t21) + fabs(l_re) + fabs(l_im);
det_re = t11_re*t22_re - t11_im*t22_im - t12*t21;
det_im = t11_re*t22_im + t11_im*t22_re;
magdet = det_re*det_re+det_im*det_im;
if ( sqrt(magdet) < MACHEPS*scale )
{
det_re = MACHEPS*scale;
magdet = det_re*det_re+det_im*det_im;
}
invdet_re = det_re/magdet;
invdet_im = - det_im/magdet;
tmp_val1_re = t22_re*val1_re-t22_im*val1_im-t12*val2_re;
tmp_val1_im = t22_im*val1_re+t22_re*val1_im-t12*val2_im;
tmp_val2_re = t11_re*val2_re-t11_im*val2_im-t21*val1_re;
tmp_val2_im = t11_im*val2_re+t11_re*val2_im-t21*val1_im;
tmp1_re->ve[j-1] = invdet_re*tmp_val1_re -
invdet_im*tmp_val1_im;
tmp1_im->ve[j-1] = invdet_im*tmp_val1_re +
invdet_re*tmp_val1_im;
tmp1_re->ve[j] = invdet_re*tmp_val2_re -
invdet_im*tmp_val2_im;
tmp1_im->ve[j] = invdet_im*tmp_val2_re +
invdet_re*tmp_val2_im;
j -= 2;
}
else
{
t11_re = T_me[j][j] - l_re;
t11_im = - l_im;
magdet = t11_re*t11_re + t11_im*t11_im;
scale = fabs(T_me[j][j]) + fabs(l_re);
if ( sqrt(magdet) < MACHEPS*scale )
{
t11_re = MACHEPS*scale;
magdet = t11_re*t11_re + t11_im*t11_im;
}
invdet_re = t11_re/magdet;
invdet_im = - t11_im/magdet;
/* printf("checkpoint F\n"); */
val1_re = tmp1_re->ve[j] -
__ip__(&(tmp1_re->ve[j+1]),&(T->me[j][j+1]),limit-j);
/* printf("checkpoint G\n"); */
val1_im = tmp1_im->ve[j] -
__ip__(&(tmp1_im->ve[j+1]),&(T->me[j][j+1]),limit-j);
/* printf("checkpoint H\n"); */
tmp1_re->ve[j] = invdet_re*val1_re - invdet_im*val1_im;
tmp1_im->ve[j] = invdet_im*val1_re + invdet_re*val1_im;
j -= 1;
}
}
norm = v_norm_inf(tmp1_re) + v_norm_inf(tmp1_im);
sv_mlt(1/norm,tmp1_re,tmp1_re);
if ( l_im != 0.0 )
sv_mlt(1/norm,tmp1_im,tmp1_im);
mv_mlt(Q,tmp1_re,tmp2_re);
if ( l_im != 0.0 )
mv_mlt(Q,tmp1_im,tmp2_im);
if ( l_im != 0.0 )
norm = sqrt(in_prod(tmp2_re,tmp2_re)+in_prod(tmp2_im,tmp2_im));
else
norm = v_norm2(tmp2_re);
sv_mlt(1/norm,tmp2_re,tmp2_re);
if ( l_im != 0.0 )
sv_mlt(1/norm,tmp2_im,tmp2_im);
if ( l_im != 0.0 )
{
if ( ! X_im )
error(E_NULL,"schur_vecs");
set_col(X_re,i,tmp2_re);
set_col(X_im,i,tmp2_im);
sv_mlt(-1.0,tmp2_im,tmp2_im);
set_col(X_re,i+1,tmp2_re);
set_col(X_im,i+1,tmp2_im);
i += 2;
}
else
{
set_col(X_re,i,tmp2_re);
if ( X_im != MNULL )
set_col(X_im,i,tmp1_im); /* zero vector */
i += 1;
}
}
#ifdef THREADSAFE
V_FREE(tmp1_re); V_FREE(tmp1_im);
V_FREE(tmp2_re); V_FREE(tmp2_im);
#endif
return X_re;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -