📄 zmemory.c
字号:
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/* Memory allocation and de-allocation for complex matrices and vectors */
#include <stdio.h>
#include "zmatrix.h"
static char rcsid[] = "$Id: zmemory.c,v 1.2 1994/04/05 02:13:14 des Exp $";
/* zv_zero -- zeros all entries of a complex vector
-- uses __zzero__() */
#ifndef ANSI_C
ZVEC *zv_zero(x)
ZVEC *x;
#else
ZVEC *zv_zero(ZVEC *x)
#endif
{
if ( ! x )
error(E_NULL,"zv_zero");
__zzero__(x->ve,x->dim);
return x;
}
/* zm_zero -- zeros all entries of a complex matrix
-- uses __zzero__() */
#ifndef ANSI_C
ZMAT *zm_zero(A)
ZMAT *A;
#else
ZMAT *zm_zero(ZMAT *A)
#endif
{
int i;
if ( ! A )
error(E_NULL,"zm_zero");
for ( i = 0; i < A->m; i++ )
__zzero__(A->me[i],A->n);
return A;
}
/* zm_get -- gets an mxn complex matrix (in ZMAT form) */
#ifndef ANSI_C
ZMAT *zm_get(m,n)
int m,n;
#else
ZMAT *zm_get(int m, int n)
#endif
{
ZMAT *matrix;
unsigned int i;
if (m < 0 || n < 0)
error(E_NEG,"zm_get");
if ((matrix=NEW(ZMAT)) == (ZMAT *)NULL )
error(E_MEM,"zm_get");
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,0,sizeof(ZMAT));
mem_numvar(TYPE_ZMAT,1);
}
matrix->m = m; matrix->n = matrix->max_n = n;
matrix->max_m = m; matrix->max_size = m*n;
#ifndef SEGMENTED
if ((matrix->base = NEW_A(m*n,complex)) == (complex *)NULL )
{
free(matrix);
error(E_MEM,"zm_get");
}
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,0,m*n*sizeof(complex));
}
#else
matrix->base = (complex *)NULL;
#endif
if ((matrix->me = (complex **)calloc(m,sizeof(complex *))) ==
(complex **)NULL )
{ free(matrix->base); free(matrix);
error(E_MEM,"zm_get");
}
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,0,m*sizeof(complex *));
}
#ifndef SEGMENTED
/* set up pointers */
for ( i=0; i<m; i++ )
matrix->me[i] = &(matrix->base[i*n]);
#else
for ( i = 0; i < m; i++ )
if ( (matrix->me[i]=NEW_A(n,complex)) == (complex *)NULL )
error(E_MEM,"zm_get");
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,0,n*sizeof(complex));
}
#endif
return (matrix);
}
/* zv_get -- gets a ZVEC of dimension 'dim'
-- Note: initialized to zero */
#ifndef ANSI_C
ZVEC *zv_get(size)
int size;
#else
ZVEC *zv_get(int size)
#endif
{
ZVEC *vector;
if (size < 0)
error(E_NEG,"zv_get");
if ((vector=NEW(ZVEC)) == (ZVEC *)NULL )
error(E_MEM,"zv_get");
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZVEC,0,sizeof(ZVEC));
mem_numvar(TYPE_ZVEC,1);
}
vector->dim = vector->max_dim = size;
if ((vector->ve=NEW_A(size,complex)) == (complex *)NULL )
{
free(vector);
error(E_MEM,"zv_get");
}
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZVEC,0,size*sizeof(complex));
}
return (vector);
}
/* zm_free -- returns ZMAT & asoociated memory back to memory heap */
#ifndef ANSI_C
int zm_free(mat)
ZMAT *mat;
#else
int zm_free(ZMAT *mat)
#endif
{
#ifdef SEGMENTED
int i;
#endif
if ( mat==(ZMAT *)NULL || (int)(mat->m) < 0 ||
(int)(mat->n) < 0 )
/* don't trust it */
return (-1);
#ifndef SEGMENTED
if ( mat->base != (complex *)NULL ) {
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,mat->max_m*mat->max_n*sizeof(complex),0);
}
free((char *)(mat->base));
}
#else
for ( i = 0; i < mat->max_m; i++ )
if ( mat->me[i] != (complex *)NULL ) {
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,mat->max_n*sizeof(complex),0);
}
free((char *)(mat->me[i]));
}
#endif
if ( mat->me != (complex **)NULL ) {
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,mat->max_m*sizeof(complex *),0);
}
free((char *)(mat->me));
}
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,sizeof(ZMAT),0);
mem_numvar(TYPE_ZMAT,-1);
}
free((char *)mat);
return (0);
}
/* zv_free -- returns ZVEC & asoociated memory back to memory heap */
#ifndef ANSI_C
int zv_free(vec)
ZVEC *vec;
#else
int zv_free(ZVEC *vec)
#endif
{
if ( vec==(ZVEC *)NULL || (int)(vec->dim) < 0 )
/* don't trust it */
return (-1);
if ( vec->ve == (complex *)NULL ) {
if (mem_info_is_on()) {
mem_bytes(TYPE_ZVEC,sizeof(ZVEC),0);
mem_numvar(TYPE_ZVEC,-1);
}
free((char *)vec);
}
else
{
if (mem_info_is_on()) {
mem_bytes(TYPE_ZVEC,vec->max_dim*sizeof(complex)+
sizeof(ZVEC),0);
mem_numvar(TYPE_ZVEC,-1);
}
free((char *)vec->ve);
free((char *)vec);
}
return (0);
}
/* zm_resize -- returns the matrix A of size new_m x new_n; A is zeroed
-- if A == NULL on entry then the effect is equivalent to m_get() */
#ifndef ANSI_C
ZMAT *zm_resize(A,new_m,new_n)
ZMAT *A;
int new_m, new_n;
#else
ZMAT *zm_resize(ZMAT *A, int new_m, int new_n)
#endif
{
unsigned int i, new_max_m, new_max_n, new_size, old_m, old_n;
if (new_m < 0 || new_n < 0)
error(E_NEG,"zm_resize");
if ( ! A )
return zm_get(new_m,new_n);
if (new_m == A->m && new_n == A->n)
return A;
old_m = A->m; old_n = A->n;
if ( new_m > A->max_m )
{ /* re-allocate A->me */
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,A->max_m*sizeof(complex *),
new_m*sizeof(complex *));
}
A->me = RENEW(A->me,new_m,complex *);
if ( ! A->me )
error(E_MEM,"zm_resize");
}
new_max_m = max(new_m,A->max_m);
new_max_n = max(new_n,A->max_n);
#ifndef SEGMENTED
new_size = new_max_m*new_max_n;
if ( new_size > A->max_size )
{ /* re-allocate A->base */
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,A->max_m*A->max_n*sizeof(complex),
new_size*sizeof(complex));
}
A->base = RENEW(A->base,new_size,complex);
if ( ! A->base )
error(E_MEM,"zm_resize");
A->max_size = new_size;
}
/* now set up A->me[i] */
for ( i = 0; i < new_m; i++ )
A->me[i] = &(A->base[i*new_n]);
/* now shift data in matrix */
if ( old_n > new_n )
{
for ( i = 1; i < min(old_m,new_m); i++ )
MEM_COPY((char *)&(A->base[i*old_n]),
(char *)&(A->base[i*new_n]),
sizeof(complex)*new_n);
}
else if ( old_n < new_n )
{
for ( i = min(old_m,new_m)-1; i > 0; i-- )
{ /* copy & then zero extra space */
MEM_COPY((char *)&(A->base[i*old_n]),
(char *)&(A->base[i*new_n]),
sizeof(complex)*old_n);
__zzero__(&(A->base[i*new_n+old_n]),(new_n-old_n));
}
__zzero__(&(A->base[old_n]),(new_n-old_n));
A->max_n = new_n;
}
/* zero out the new rows.. */
for ( i = old_m; i < new_m; i++ )
__zzero__(&(A->base[i*new_n]),new_n);
#else
if ( A->max_n < new_n )
{
complex *tmp;
for ( i = 0; i < A->max_m; i++ )
{
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,A->max_n*sizeof(complex),
new_max_n*sizeof(complex));
}
if ( (tmp = RENEW(A->me[i],new_max_n,complex)) == NULL )
error(E_MEM,"zm_resize");
else {
A->me[i] = tmp;
}
}
for ( i = A->max_m; i < new_max_m; i++ )
{
if ( (tmp = NEW_A(new_max_n,complex)) == NULL )
error(E_MEM,"zm_resize");
else {
A->me[i] = tmp;
if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,0,new_max_n*sizeof(complex));
}
}
}
}
else if ( A->max_m < new_m )
{
for ( i = A->max_m; i < new_m; i++ )
if ( (A->me[i] = NEW_A(new_max_n,complex)) == NULL )
error(E_MEM,"zm_resize");
else if (mem_info_is_on()) {
mem_bytes(TYPE_ZMAT,0,new_max_n*sizeof(complex));
}
}
if ( old_n < new_n )
{
for ( i = 0; i < old_m; i++ )
__zzero__(&(A->me[i][old_n]),new_n-old_n);
}
/* zero out the new rows.. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -