⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaussian.html

📁 this is a mirrored site c-faq. thought might need offline
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN"><!-- This collection of hypertext pages is Copyright 1995-2005 by Steve Summit. --><!-- Content from the book "C Programming FAQs: Frequently Asked Questions" --><!-- (Addison-Wesley, 1995, ISBN 0-201-84519-9) is made available here by --><!-- permission of the author and the publisher as a service to the community. --><!-- It is intended to complement the use of the published text --><!-- and is protected by international copyright laws. --><!-- The on-line content may be accessed freely for personal use --><!-- but may not be published or retransmitted without explicit permission. --><!-- --><!-- this page built Sat Dec 24 21:47:46 2005 by faqproc version 2.7 --><!-- from source file librand.sgml dated Sat Jul  3 13:09:31 2004 --><!-- corresponding to FAQ list version 4.0 --><html><!-- Mirrored from c-faq.com/lib/gaussian.html by HTTrack Website Copier/3.x [XR&CO'2008], Sat, 14 Mar 2009 07:58:59 GMT --><head><meta name=GENERATOR content="faqproc"><title>Question 13.20</title><link href="fprand.html" rev=precedes><link href="rand48.html" rel=precedes><link href="index.html" rev=subdocument></head><body bgcolor="#ffffff"><a href="fprand.html" rev=precedes><img src="../images/buttonleft.gif" alt="prev"></a><a href="index.html" rev=subdocument><img src="../images/buttonup.gif" alt="up"></a><a href="rand48.html" rel=precedes><img src="../images/buttonright.gif" alt="next"></a>&nbsp;<a href="../index-2.html"><img src="../images/buttontop.gif" alt="top/contents"></a><a href="../search.html"><img src="../images/buttonsrch.gif" alt="search"></a><hr><p><!-- qbegin --><h1>comp.lang.c FAQ list<font color=blue>&middot;</font><!-- qtag -->Question 13.20</h1><p><font face=Helvetica size=8 color=blue><b>Q:</b></font>How can I generate random numbers with anormal orGaussian distribution?</p><p><hr><p><font face=Helvetica size=8 color=blue><b>A:</b></font>There are a number of ways of doing this.</p><OL><li>ExploittheCentral Limit Theorem(``law of large numbers'')and add up several uniformly-distributed random numbers:<pre>#include &lt;stdlib.h&gt;#include &lt;math.h&gt;#define NSUM 25double gaussrand(){	double x = 0;	int i;	for(i = 0; i &lt; NSUM; i++)		x += (double)rand() / RAND_MAX;	x -= NSUM / 2.0;	x /= sqrt(NSUM / 12.0);	return x;}</pre>(Don't overlook the <TT>sqrt(NSUM&nbsp;/&nbsp;12.)</TT> correction,thoughit's easy to do so accidentally,especially when <TT>NSUM</TT> is 12.)<li>Use a method described byAbramowitzandStegun:<pre>#include &lt;stdlib.h&gt;#include &lt;math.h&gt;#define PI 3.141592654double gaussrand(){	static double U, V;	static int phase = 0;	double Z;	if(phase == 0) {		U = (rand() + 1.) / (RAND_MAX + 2.);		V = rand() / (RAND_MAX + 1.);		Z = sqrt(-2 * log(U)) * sin(2 * PI * V);	} else		Z = sqrt(-2 * log(U)) * cos(2 * PI * V);	phase = 1 - phase;	return Z;}</pre><li>Use amethoddiscussedinKnuthand due originallyto Marsaglia:<pre>#include &lt;stdlib.h&gt;#include &lt;math.h&gt;double gaussrand(){	static double V1, V2, S;	static int phase = 0;	double X;	if(phase == 0) {		do {			double U1 = (double)rand() / RAND_MAX;			double U2 = (double)rand() / RAND_MAX;			V1 = 2 * U1 - 1;			V2 = 2 * U2 - 1;			S = V1 * V1 + V2 * V2;			} while(S &gt;= 1 || S == 0);		X = V1 * sqrt(-2 * log(S) / S);	} else		X = V2 * sqrt(-2 * log(S) / S);	phase = 1 - phase;	return X;}</pre></OL>Thesemethodsallgenerate numbers with mean 0and standard deviation1.(To adjust to someother distribution,multiply bythe standard deviationand add the mean.)Method 1 is poor ``in the tails''(especially if <TT>NSUM</TT> is small),but methods 2 and 3 performquitewell.See the references for more information.<p><a href="sd16.html" rel=subdocument>Additional links</a></p><p>References:Knuth Sec. 3.4.1 p. 117<br>Box and Muller, ``A Note on the Generation of Random Normal Deviates''<br>Marsaglia and Bray, ``A Convenient Method for Generating Normal Variables''<br>Abramowitz and Stegun, <I>Handbook of Mathematical Functions</I><br>Press et al., <I>Numerical Recipes in C</I> Sec. 7.2 pp. 288-290<br></p><!-- aend --><p><hr><a href="fprand.html" rev=precedes><img src="../images/buttonleft.gif" alt="prev"></a><a href="index.html" rev=subdocument><img src="../images/buttonup.gif" alt="up"></a><a href="rand48.html" rel=precedes><img src="../images/buttonright.gif" alt="next"></a>&nbsp;<a href="../questions.html"><img src="../images/buttontop.gif" alt="contents"></a><a href="../search.html"><img src="../images/buttonsrch.gif" alt="search"></a><br><!-- lastfooter --><a href="../about.html">about this FAQ list</a>&nbsp;<a href="../eskimo.html">about eskimo</a>&nbsp;<a href="../search.html">search</a>&nbsp;<a href="../feedback.html">feedback</a>&nbsp;<a href="copyright.html">copyright</a><p>Hosted by<a href="http://www.eskimo.com/"><img src="../../www.eskimo.com/img/link/eskitiny.gif" alt="Eskimo North"></a></body><!-- Mirrored from c-faq.com/lib/gaussian.html by HTTrack Website Copier/3.x [XR&CO'2008], Sat, 14 Mar 2009 07:58:59 GMT --></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -