📄 series expansion.nb
字号:
Cell[BoxData[{
\(tt =
Series[Pi\ Pi\ energy[k, k]\ \ energy[l, l]\ , {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(tm =
Series[beta[kx - lx, ky - ly]\ \ g[kx, ky]\ \ g[lx, ly]/
8.0 + \((v\ \ absgamma[kx, ky]^2\ beta[lx, ly]\ g[lx, ly] +
v\ absgamma[lx, ly]^2\ beta[kx, ky] g[kx, ky] -
beta[kx, ky] beta[lx, ly] g[kx, ky] g[lx, ly]\ \ )\)/\((\
4.0\ \ beta[0.0, 0.0]\ )\), {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(nu =
Series[\(-v\)\ \ ff[kx, ky, lx, ly], {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(de =
Series[64.0\ \ energy[kx + lx,
ky + ly] \((energy[kx, ky] + energy[lx, ly] +
energy[kx + lx, ky + ly])\), {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(\)}], "Input"],
Cell[CellGroupData[{
Cell[BoxData[{
\(t1Fp =
Series[Fp[\(-k\) - l, \(-k\) - l, l, l, \(-k\), \(-k\), 0.0, 0.0]\ fa[
k + l, k + l]\ fa[l, l]\ fm[k, k], {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(t2Fp =
Series[\(-Fp[k, k, 0.0, 0.0, k + l, k + l, \(-l\), \(-l\)]\)\ fm[k + l,
k + l]\ fm[l, l]\ fa[k, k]\ , {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(t3Fp =
Series[Fp[k, k, \(-k\) - l, \(-k\) - l, \(-l\), \(-l\), 0.0, 0.0]\ fa[
k + l, k + l]\ fm[l, l]\ fa[k, k]\ , {k, 0, 3}, {l, 0,
3}]\), "\[IndentingNewLine]",
\(t4Fp =
Series[\(-Fp[l, l, 0.0, 0.0, \(-k\), \(-k\), k + l, k + l]\)\ fm[k + l,
k + l]\ fa[l, l]\ fm[k, k]\ , {k, 0, 3}, {l, 0, 3}]\)}], "Input"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\((\(\(3.279830741048466`\)\(\[InvisibleSpace]\)\) +
0.`\ \[ImaginaryI])\),
"+", \(\((\(\(0.00016119933111368852`\)\(\[InvisibleSpace]\)\) \
- 2.8566574327839`*^-18\ \[ImaginaryI])\)\ l\),
"-", \(\((\(\(6.183696846837617`\)\(\[InvisibleSpace]\)\) +
1.3386228157710744`*^-16\ \[ImaginaryI])\)\ l\^2\),
"+", \(\((\(\(6855.748327717425`\)\(\[InvisibleSpace]\)\) +
5.570940791913294`*^-18\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ 3.2798307410484662, 0.0],
Complex[ .00016119933111368852, -.28566574327839001*^-17],
Complex[ -6.1836968468376172, -.13386228157710744*^-15],
Complex[ 6855.7483277174251, .55709407919132938*^-17]}, 0, 4,
1],
Editable->False], ")"}], "+",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\(-\((\(\(0.00016120195261845193`\)\(\[InvisibleSpace]\)\
\) + 2.8566574327839`*^-18\ \[ImaginaryI])\)\),
"-", \(\((\(\(5.807732211578172`\)\(\[InvisibleSpace]\)\) +
1.3370881183061602`*^-16\ \[ImaginaryI])\)\ l\),
"+", \(\((\(\(0.04279765398768998`\)\(\[InvisibleSpace]\)\) +
1.1207939958068902`*^-17\ \[ImaginaryI])\)\ l\^2\),
"+", \(\((1.197355451537665`*^8 -
4.938931576383504`*^-15\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ -.00016120195261845193, -.28566574327839001*^-17],
Complex[ -5.8077322115781724, -.13370881183061602*^-15],
Complex[ .042797653987689983, .11207939958068902*^-16],
Complex[ 119735545.1537665, -.49389315763835039*^-14]}, 0, 4,
1],
Editable->False], ")"}], " ", "k"}], "+",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\(-\((\(\(4.543781468390391`\)\(\[InvisibleSpace]\)\) -
1.4040320750807122`*^-22\ \[ImaginaryI])\)\),
"+", \(\((\(\(0.04284129702503164`\)\(\[InvisibleSpace]\)\) -
1.2384989397599531`*^-16\ \[ImaginaryI])\)\ l\),
"+", \(\((1.796033198557366`*^8 +
8.881784197001252`*^-16\ \[ImaginaryI])\)\ l\^2\),
"+", \(\((9.79555638058099`*^6 -
2.6071689314291317`*^-10\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ -4.5437814683903914, .14040320750807122*^-21],
Complex[ .042841297025031637, -.12384989397599531*^-15],
Complex[ 179603319.85573661, .88817841970012523*^-15],
Complex[ 9795556.3805809896, -.26071689314291317*^-9]}, 0, 4,
1],
Editable->False], ")"}], " ", \(k\^2\)}], "+",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\(-\((\(\(6855.719888866194`\)\(\[InvisibleSpace]\)\) -
4.0833635214943514`*^-18\ \[ImaginaryI])\)\),
"+", \(\((1.197355465854423`*^8 +
6.626318749302692`*^-15\ \[ImaginaryI])\)\ l\),
"+", \(\((9.812094838146513`*^6 -
2.610249794088304`*^-10\ \[ImaginaryI])\)\ l\^2\),
"-", \(\((6.513036805842169`*^15 +
14.098861368449482`\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ -6855.7198888661942, .40833635214943514*^-17],
Complex[ 119735546.5854423, .66263187493026921*^-14],
Complex[ 9812094.8381465133, -.2610249794088304*^-9],
Complex[ -6513036805842169.0, -14.098861368449482]}, 0, 4, 1],
Editable->False], ")"}], " ", \(k\^3\)}], "+",
InterpretationBox[\(O[k]\^4\),
SeriesData[ k, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ k, 0, {
SeriesData[ l, 0, {
Complex[ 3.2798307410484662, 0.0],
Complex[ .00016119933111368852, -.28566574327839001*^-17],
Complex[ -6.1836968468376172, -.13386228157710744*^-15],
Complex[ 6855.7483277174251, .55709407919132938*^-17]}, 0, 4, 1],
SeriesData[ l, 0, {
Complex[ -.00016120195261845193, -.28566574327839001*^-17],
Complex[ -5.8077322115781724, -.13370881183061602*^-15],
Complex[ .042797653987689983, .11207939958068902*^-16],
Complex[ 119735545.1537665, -.49389315763835039*^-14]}, 0, 4, 1],
SeriesData[ l, 0, {
Complex[ -4.5437814683903914, .14040320750807122*^-21],
Complex[ .042841297025031637, -.12384989397599531*^-15],
Complex[ 179603319.85573661, .88817841970012523*^-15],
Complex[ 9795556.3805809896, -.26071689314291317*^-9]}, 0, 4, 1],
SeriesData[ l, 0, {
Complex[ -6855.7198888661942, .40833635214943514*^-17],
Complex[ 119735546.5854423, .66263187493026921*^-14],
Complex[ 9812094.8381465133, -.2610249794088304*^-9],
Complex[ -6513036805842169.0, -14.098861368449482]}, 0, 4, 1]}, 0,
4, 1],
Editable->False]], "Output"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\(-\((\(\(3.2798306719312023`\)\(\[InvisibleSpace]\)\) +
0.`\ \[ImaginaryI])\)\),
"+", \(\((\(\(0.0001611993277166114`\)\(\[InvisibleSpace]\)\) -
2.8566573725843467`*^-18\ \[ImaginaryI])\)\ l\),
"+", \(\((\(\(6.935625963276123`\)\(\[InvisibleSpace]\)\) -
1.338619979543283`*^-16\ \[ImaginaryI])\)\ l\^2\),
"+", \(\((\(\(6855.748146287007`\)\(\[InvisibleSpace]\)\) +
6.239012114470769`*^-18\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ -3.2798306719312023, 0.0],
Complex[ .00016119932771661139, -.28566573725843467*^-17],
Complex[ 6.9356259632761228, -.1338619979543283*^-15],
Complex[ 6855.7481462870073, .62390121144707693*^-17]}, 0, 4,
1],
Editable->False], ")"}], "+",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\(-\((\(\(0.00016120194922143006`\)\(\[InvisibleSpace]\)\
\) + 2.8566573725843467`*^-18\ \[ImaginaryI])\)\),
"+", \(\((\(\(7.311590582689714`\)\(\[InvisibleSpace]\)\) -
1.337088090174801`*^-16\ \[ImaginaryI])\)\ l\),
"+", \(\((\(\(0.04276069736155261`\)\(\[InvisibleSpace]\)\) +
1.3145951341386741`*^-17\ \[ImaginaryI])\)\ l\^2\),
"+", \(\((1.1973551689340569`*^8 +
7.36405226818457`*^-15\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ -.00016120194922143006, -.28566573725843467*^-17],
Complex[ 7.3115905826897141, -.1337088090174801*^-15],
Complex[ .042760697361552608, .13145951341386741*^-16],
Complex[ 119735516.89340569, .73640522681845698*^-14]}, 0, 4,
1],
Editable->False], ")"}], " ", "k"}], "+",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\((\(\(5.29571061938753`\)\(\[InvisibleSpace]\)\) -
1.40403204549343`*^-22\ \[ImaginaryI])\),
"+", \(\((\(\(0.042878253649470705`\)\(\[InvisibleSpace]\)\) \
- 1.218982953606052`*^-16\ \[ImaginaryI])\)\ l\),
"+", \(\((1.796032743429154`*^8 +
8.881784197001252`*^-16\ \[ImaginaryI])\)\ l\^2\),
"+", \(\((9.78809975458604`*^6 +
2.607176620048838`*^-10\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ 5.2957106193875303, -.140403204549343*^-21],
Complex[ .042878253649470705, -.12189829536060521*^-15],
Complex[ 179603274.34291539, .88817841970012523*^-15],
Complex[ 9788099.7545860391, .26071766200488379*^-9]}, 0, 4,
1],
Editable->False], ")"}], " ", \(k\^2\)}], "+",
RowBox[{
RowBox[{"(",
InterpretationBox[
RowBox[{\(-\((\(\(6855.7197074357755`\)\(\[InvisibleSpace]\)\) \
- 4.7382765822637344`*^-18\ \[ImaginaryI])\)\),
"+", \(\((1.1973551621365905`*^8 -
5.285315541718501`*^-15\ \[ImaginaryI])\)\ l\),
"+", \(\((9.819551464032264`*^6 +
2.610249794088304`*^-10\ \[ImaginaryI])\)\ l\^2\),
"-", \(\((6.513036777181397`*^15 +
14.098861052533104`\ \[ImaginaryI])\)\ l\^3\), "+",
InterpretationBox[\(O[l]\^4\),
SeriesData[ l, 0, {}, 0, 4, 1],
Editable->False]}],
SeriesData[ l, 0, {
Complex[ -6855.7197074357755, .47382765822637344*^-17],
Complex[ 119735516.21365905, -.52853155417185008*^-14],
Complex[ 9819551.4640322644, .2610249794088304*^-9],
Complex[ -6513036777181397.0, -14.098861052533104]}, 0, 4, 1],
Editable->False], ")"}], " ", \(k\^3\)}], "+",
InterpretationBox[\(O[k]\^4\),
SeriesData[ k, 0, {}, 0, 4, 1],
Editable->False]}],
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -