📄 series expansion.nb
字号:
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.1'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 116733, 2359]*)
(*NotebookOutlinePosition[ 117377, 2381]*)
(* CellTagsIndexPosition[ 117333, 2377]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[BoxData[{
\(\(Clear["\<Global`*\>"];\)\), "\[IndentingNewLine]",
\(\(d = Sqrt[4\ Pi/\ Sqrt\ [3]];\)\), "\[IndentingNewLine]",
\(\(Array[\ Rx, {3, 6}];\)\), "\[IndentingNewLine]",
\(\(Rx = {{d, 0.5\ \ d, \(-0.5\)\ \ d, \(-d\), \(-0.5\)\ \ d,
0.5\ \ d}, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {1.5\ \ d,
0.0, \(-1.5\)\ \ d, \(-1.5\)\ \ d, 0.0,
1.5\ d\ }, \[IndentingNewLine]\t\t\t\t\ \ {2.0\ d,
d, \(-d\), \(-2.0\)\ d, \(-d\), d}};\)\), "\n",
\(\(Array[\ Ry, {3, 6}];\)\), "\[IndentingNewLine]",
\(\(Ry = {{0.0, Sqrt[3.0]/2.0\ \ d, Sqrt[3.0]/2.0\ \ d,
0.0, \(-Sqrt[3.0]\)/2.0\ \ d, \(-Sqrt[3.0]\)/
2.0\ \ d}, \[IndentingNewLine]\t\t\t\t\ \ \ {Sqrt[3.0]/
2.0\ \ d, Sqrt[3.0]\ \ d,
Sqrt[3.0]/2.0\ \ d, \(-Sqrt[3.0]\)/
2.0\ \ d, \(-Sqrt[3.0]\)\ \ d, \(-Sqrt[3.0]\)/
2.0\ \ d\ }, \[IndentingNewLine]\t\t\t\t\ \ {0.0,
Sqrt[3.0]\ \ d, Sqrt[3.0]\ \ d,
0.0, \(-Sqrt[3.0]\)\ \ d, \(-Sqrt[
3.0]\)\ \ d}};\)\), "\[IndentingNewLine]",
\(\(F[kx_, ky_, lx_, ly_, kpx_, kpy_, lpx_,
lpy_] := \ \[ExponentialE]\^\(\(-0.5\)\ \((kx - kpx)\)\^2 - 0.5 \
\((ky - kpy)\)\^2\ + \ I\ \((ky - kpy)\) \((kx - lpx)\)\)\ \ \((1.0 + \
\[ExponentialE]\^\(\(-0.5\)\ d\^2\)\ \ \ Sum\ [\[ExponentialE]\^\(Rx[\([1, j]\
\)] \((ky - kpy)\) - Ry[\([1, j]\)] \((kx - kpx)\) + \ I\ \((\ \(-Rx\ [\([1, \
j]\)]\) \((kx - lpx)\) - Ry\ [\([1, j]\)] \((ky - lpy)\)\ )\)\), {j, 1,
6}] + \ \[ExponentialE]\^\(\(-1.5\)\ d\^2\)\ \ Sum\ [\
\[ExponentialE]\^\(Rx[\([2, j]\)] \((ky - kpy)\) - Ry[\([2, j]\)] \((kx - \
kpx)\) + \ I\ \((\ \(-Rx\ [\([2, j]\)]\) \((kx - lpx)\) - Ry\ [\([2, j]\)] \
\((ky - lpy)\)\ )\)\), {j, 1,
6}] + \[ExponentialE]\^\(\(-2.0\)\ d\^2\)\ \ Sum\ [\
\[ExponentialE]\^\(Rx[\([3, j]\)] \((ky - kpy)\) - Ry[\([3, j]\)] \((kx - \
kpx)\) + \ I\ \((\ \(-Rx\ [\([3, j]\)]\) \((kx - lpx)\) - Ry\ [\([3, j]\)] \
\((ky - lpy)\)\ )\)\), {j, 1, 6}])\);\)\), "\[IndentingNewLine]",
\(\(gamma\ [\ kx_,
ky_]\ := \(\[ExponentialE]\^\(\(-I\)\ kx\ \ ky - 0.5\ kx\^2 -
0.5\ ky\^2\)\) \((1.0 + \[ExponentialE]\^\(\(-0.5\)\ d\^2\)\ \
Sum[\[ExponentialE]\^\(\(\ \)\(\((I\ kx + \ ky)\)\ \ \((\ \ Rx[\([1, j]\)] + \
I\ Ry[\([1, j]\)])\)\)\), {j, 1,
6}] + \[ExponentialE]\^\(\(-1.5\)\ d\^2\)\ Sum[\
\[ExponentialE]\^\(\(\ \)\(\((I\ kx + \ ky)\)\ \ \((Rx\ [\([2, j]\)]\ + \ I\ \
Ry\ [\([2, j]\)]\ )\)\)\), {j, 1,
6}] + \[ExponentialE]\^\(\(-2.0\)\ d\^2\)\ Sum[\
\[ExponentialE]\^\(I\ \((kx - I\ ky)\) \((Rx[\([3, j]\)] + I\ Ry[\([3, j]\)])\
\)\), {j, 1, 6}])\);\)\), "\[IndentingNewLine]",
\(\(Cgamma[kx_,
ky_] := \(\[ExponentialE]\^\(I\ kx\ \ ky - 0.5\ kx\^2 -
0.5\ ky\^2\)\) \((1.0 + \[ExponentialE]\^\(\(-0.5\)\ d\^2\)\ \
Sum[\[ExponentialE]\^\(\(\ \)\(\((\(-I\)\ kx + \ ky)\)\ \ \((\ \ Rx[\([1, \
j]\)] - I\ Ry[\([1, j]\)])\)\)\), {j, 1,
6}] + \[ExponentialE]\^\(\(-1.5\)\ d\^2\)\ Sum[\
\[ExponentialE]\^\(\(\ \)\(\((\(-I\)\ kx + \ ky)\)\ \ \((Rx\ [\([2, j]\)]\ - \
\ I\ Ry\ [\([2, j]\)]\ )\)\)\), {j, 1,
6}] + \[ExponentialE]\^\(\(-2.0\)\ d\^2\)\ Sum[\
\[ExponentialE]\^\(\(-I\)\ \((kx + I\ ky)\) \((Rx[\([3, j]\)] - I\ Ry[\([3, \
j]\)])\)\), {j, 1, 6}])\);\)\), "\[IndentingNewLine]",
\(\(absgamma[kx_, ky_] :=
Sqrt[\ gamma[kx, ky]\ Cgamma[kx, ky]\ ];\)\), "\[IndentingNewLine]",
\(\(gammap[kx_, ky_]\ :=
Sqrt[\ gamma[kx, ky]/
absgamma[kx, ky]\ \ ];\)\), "\[IndentingNewLine]",
\(\(phase[kx_, ky_, lx_, ly_, kpx_, kpy_, lpx_, lpy_] :=
gammap[kx, ky]\ \(gammap[lx, ly]/gammap[kpx, kpy]\)/
gammap[lpx, lpy];\)\), "\[IndentingNewLine]",
\(\(beta[kx_, ky_] :=
1.0 + \[ExponentialE]\^\(\(-0.5\)\ d\^2\)\ Sum[\[ExponentialE]\^\(I\ \
\((kx\ \ Rx[\([1, j]\)] + ky\ \ Ry[\([1, j]\)])\)\), {j, 1,
6}] + \[ExponentialE]\^\(\(-1.5\)\ d\^2\)\ \
Sum[\[ExponentialE]\^\(I\ \((\ kx\ \ Rx[\([2, j]\)] + ky\ \ Ry[\([2, j]\)])\)\
\), {j, 1,
6}] + \[ExponentialE]\^\(\(-2.0\)\ d\^2\)\ \
Sum[\[ExponentialE]\^\(I\ \((kx\ \ Rx[\([3, j]\)] + ky\ \ Ry[\([3, \
j]\)])\)\), {j, 1, 6}];\)\), "\[IndentingNewLine]",
\(\(au = \(-1.0\);\)\), "\[IndentingNewLine]",
\(\(v = \(\(-au\)/2.0\)/beta[0.0, 0.0];\)\), "\[IndentingNewLine]",
\(\(g[kx_, ky_] :=
au + 4.0\ \ v\ \ \ beta[kx, ky];\)\), "\[IndentingNewLine]",
\(\(energy[kx_, ky_] :=
Sqrt[g[kx, ky]^2 -
4.0\ v^2\ \ absgamma[kx, ky]^2\ ]\ ;\)\), "\[IndentingNewLine]",
\(\(fa[kx_, ky_] :=
Sqrt[g[kx, ky] + 2.0\ v\ absgamma[kx, ky]] +
Sqrt[g[kx, ky] -
2.0\ v\ absgamma[kx, ky]];\)\), "\[IndentingNewLine]",
\(\(fm[kx_, ky_] :=
Sqrt[g[kx, ky] + 2.0\ v\ absgamma[kx, ky]] -
Sqrt[g[kx, ky] -
2.0\ v\ absgamma[kx,
ky]];\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(Fp[kx_, ky_, lx_, ly_, kpx_, kpy_, lpx_, lpy_] :=
F[kx, ky, lx, ly, kpx, kpy, lpx, lpy]\ \ \ phase[kx, ky, lx, ly, kpx,
kpy, lpx, lpy];\)\[IndentingNewLine]\), "\n",
\(\(f1[kx_, ky_, lx_,
ly_] := \((Fp[\(-kx\) - lx, \(-ky\) - ly, lx, ly, \(-kx\), \(-ky\),
0.0, 0.0]\ fa[kx + lx, ky + ly]\ fa[lx, ly]\ fm[kx,
ky]\[IndentingNewLine] -
Fp[kx, ky, 0.0, 0.0, kx + lx, ky + ly, \(-lx\), \(-ly\)]\ fm[
kx + lx, ky + ly]\ fm[lx, ly]\ fa[kx,
ky]\ \[IndentingNewLine] +
Fp[kx, ky, \(-kx\) - lx, \(-ky\) - ly, \(-lx\), \(-ly\), 0.0,
0.0]\ fa[kx + lx, ky + ly]\ fm[lx, ly]\ fa[kx,
ky]\ \[IndentingNewLine] -
Fp[lx, ly, 0.0, 0.0, \(-kx\), \(-ky\), kx + lx, ky + ly]\ fm[
kx + lx, ky + ly]\ fa[lx, ly]\ fm[kx,
ky]\ \[IndentingNewLine]\ \ )\);\)\), "\[IndentingNewLine]",
\(\(f2[kx_, ky_, lx_, ly_] := \((\
Fp[kx + lx, ky + ly, 0.0, 0.0, kx, ky, lx, ly]\ fm[kx + lx,
ky + ly] fa[lx, ly]\ fa[kx, ky]\n\t\t\t\t\t\t -
Fp[\(-kx\), \(-ky\), \(-lx\), \(-ly\), \(-kx\) - lx, \(-ky\) -
ly, 0.0, 0.0]\ fa[kx + lx, ky + ly]\ fm[lx, ly]\ fm[kx,
ky]\n\t\t\t\t\t\t +
Fp[\(-lx\), \(-ly\), 0.0, 0.0, kx,
ky, \(-kx\) - lx, \(-ky\) - ly]\ fa[kx + lx, ky + ly]\ fm[lx,
ly]\ fa[kx, ky]\n\t\t\t\t\t\t -
Fp[\(-kx\), \(-ky\), kx + lx, ky + ly, lx, ly, 0.0, 0.0]\ fm[
kx + lx, ky + ly]
fa[lx, ly]\ fm[kx, ky]\[IndentingNewLine]\t\t\t\t\t\ \ \ \ \ +
Fp[\(-kx\), \(-ky\), 0.0, 0.0, \(-kx\) - lx, \(-ky\) - ly, lx,
ly]\ fa[kx + lx, ky + ly]
fa[lx, ly]\ fm[kx, ky]\n\t\t\t\t\t\t -
Fp[kx + lx, ky + ly, \(-lx\), \(-ly\), kx, ky, 0.0, 0.0]\ fm[
kx + lx, ky + ly]
fm[lx, ly]\ fa[kx, ky]\n\t\t\t\t\t\t\ \ )\);\)\), "\n",
\(\(ff[kx_, ky_, lx_, ly_] :=
f1[kx, ky, lx, ly]\ f2[kx, ky, lx,
ly];\)\[IndentingNewLine]\t\t\t\t\t\t\), "\[IndentingNewLine]",
\(\(tot[kx_, ky_, lx_, ly_] :=
1.0/\((Pi\ Pi\ energy[kx, ky]\ \ energy[lx, ly]\ )\)\ \((beta[
kx - lx, ky - ly]\ \ g[kx, ky]\ \ g[lx, ly]/
8.0 + \((v\ \ absgamma[kx, ky]^2\ beta[lx, ly]\ g[lx, ly] +
v\ absgamma[lx, ly]^2\ beta[kx, ky] g[kx, ky] -
beta[kx, ky] beta[lx, ly] g[kx, ky]
g[lx, ly]\ \ )\)/\((\
4.0\ \ beta[0.0, 0.0]\ )\)\[IndentingNewLine]\(-\(v\ \ ff[
kx, ky, lx,
ly]\ /\((64.0\ \ energy[kx + lx,
ky + ly] \((energy[kx, ky] + energy[lx, ly] +
energy[kx + lx,
ky + ly])\))\)\)\)\ \ \ \ \ \ \ \ )\);\)\
\[IndentingNewLine]\ \ \ \[IndentingNewLine]\[IndentingNewLine]\
\[IndentingNewLine]\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\)}], "Input"],
Cell[BoxData[
\(\(\(\[IndentingNewLine]\)\(t1Fp =
Series[Fp[\(-k\) - l, \(-k\) - l, l, l, \(-k\), \(-k\), 0.0, 0.0]\ fa[
k + l, k + l]\ fa[l, l]\ fm[k, k], {k, 0, 3}, {l, 0,
3}]\[IndentingNewLine]
t2Fp =
Series[\(-Fp[k, k, 0.0, 0.0, k + l, k + l, \(-l\), \(-l\)]\)\ fm[k + l,
k + l]\ fm[l, l]\ fa[k, k]\ , {k, 0, 3}, {l, 0,
3}]\[IndentingNewLine]
t3Fp =
Series[Fp[k, k, \(-k\) - l, \(-k\) - l, \(-l\), \(-l\), 0.0, 0.0]\ fa[
k + l, k + l]\ fm[l, l]\ fa[k, k]\ , {k, 0, 3}, {l, 0,
3}]\[IndentingNewLine]
t4Fp =
Series[\(-Fp[l, l, 0.0, 0.0, \(-k\), \(-k\), k + l, k + l]\)\ fm[k + l,
k + l]\ fa[l, l]\ fm[k, k]\ , {k, 0, 3}, {l, 0,
3}]\[IndentingNewLine]\[IndentingNewLine]
t5Fp = \ \ Series[
Fp[k + l, k + l, 0.0, 0.0, k, k, l, l]\ fm[k + l, k + l]
fa[l, l]\ fa[k, k], {k, 0, 3}, {l, 0, 3}]\n
t6Fp =
Series[\(-Fp[\(-k\), \(-k\), \(-l\), \(-l\), \(-k\) - l, \(-k\) - l,
0.0, 0.0]\)\ fa[k + l, k + l]\ fm[l, l]\ fm[k, k], {k, 0,
3}, {l, 0, 3}]\n
t7Fp =
Series[\ Fp[\(-l\), \(-l\), 0.0, 0.0, k, k, \(-k\) - l, \(-k\) - l]\ fa[
k + l, k + l]\ fm[l, l]\ fa[k, k], {k, 0, 3}, {l, 0, 3}]\ \n
t8Fp =
Series[\(-Fp[\(-k\), \(-k\), k + l, k + l, l, l, 0.0, 0.0]\)\ fm[k + l,
k + l] fa[l, l]\ fm[k, k], {k, 0, 3}, {l, 0,
3}]\[IndentingNewLine]
t9Fp =
Series[\ Fp[\(-k\), \(-k\), 0.0, 0.0, \(-k\) - l, \(-k\) - l, l, l]\ fa[
k + l, k + l] fa[l, l]\ fm[k, k], {k, 0, 3}, {l, 0, 3}]\ \n
t10Fp =
Series[\(-Fp[k + l, k + l, \(-l\), \(-l\), k, k, 0.0, 0.0]\)\ fm[k + l,
k + l] fm[l, l]\ fa[k, k], {k, 0, 3}, {l, 0,
3}]\n\t\t\t\t\t\t\ \ \[IndentingNewLine]
\)\)\)], "Input"],
Cell[BoxData[{
\(\(tot[kx_, ky_, lx_, ly_] :=
1.0/tt \((\ tm + nu\ /de\ )\);\)\ \ \ \), "\[IndentingNewLine]",
\(tt = \(\(Pi\)\(\ \)\(Pi\)\(\ \)\(energy[kx, ky]\)\(\ \ \)\(energy[lx,
ly]\)\(\ \)\)\), "\[IndentingNewLine]",
\(tm =
beta[kx - lx, ky - ly]\ \ g[kx, ky]\ \ g[lx, ly]/
8.0 + \((v\ \ absgamma[kx, ky]^2\ beta[lx, ly]\ g[lx, ly] +
v\ absgamma[lx, ly]^2\ beta[kx, ky] g[kx, ky] -
beta[kx, ky] beta[lx, ly] g[kx, ky] g[lx, ly]\ \ )\)/\((\
4.0\ \ beta[0.0, 0.0]\ )\)\), "\[IndentingNewLine]",
\(nu = \(-v\)\ \ ff[kx, ky, lx, ly]\), "\[IndentingNewLine]",
\(\(\(de =
64.0\ \ energy[kx + lx,
ky + ly] \((energy[kx, ky] + energy[lx, ly] +
energy[kx + lx,
ky + ly])\)\)\(\[IndentingNewLine]\)\(\[IndentingNewLine]\)
\)\), "\[IndentingNewLine]",
\(\ \)}], "Input"],
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -