📄 spcomp_nrs_low.m
字号:
% spcomp_NRS_low.m file is written to search the singular points
% in the state-space by changing the dynamic variables.
% It implements only Newton-Raphson-Seydel (NRS) algorithm
% All the generator angles have been parameterized as follows:
% x=(1-alpha)x_lower + alpha*x_upper. The search will start at the lower equilibrium point
% This M-file enables us to parameterize more than one dynamic variables
%For example, delta2, delta2+delta3, delta2+delta3+delta4....
% Reorder parameter values such that param=[P Q]'
k_temp=no_gen+no_pv-1;
for i=1:k_temp
paramx(i)=param(i);
end
for i=1:no_pq
ii=k_temp+i;
jj=k_temp+1+2*(i-1);
paramx(ii)=param(jj);
paramx(ii+no_pq)=param(jj+1);
end
param=paramx';
% Specify the initial parameter and some indexing% *************************************************alpha_sp=0;n=length(x);sub_strt=no_gen;
% Initial algebraic variables and data storing% *****************************************************
fn=length(x); %the number of states
all_eig_Dyg=[]; %store all eigenvalues of Dygparam0=param; %initial bus injectionsXX_sp=[]; %store the states at each parameter value
AA_sp=[]; %store paramater
LAMBDA_SP=[]; %store the smallest eigenvalue that we force to be zero
eig_Dyg=[]; %store the smallest eigenvalue of Dyg computed by eigs command
XX_sing=[]; %store the singular points
PP_sp=[]; %store the real and reactive power injections
x_sub0=x(sub_strt:fn); %extract the load bus variables,before the search starts
alpha_low=AA(CurrentPoint); %current paramater value in the parameter space
x_low=XX(:,CurrentPoint); %dynamic and algebraic states at the current parameter,alpha_up
%% Obtain the corresponding paramater values of the lower part
%=================================================================================
for ii=1:np %np, the index corresponding to the nose point
alpha_temp=alpha_low-AA(ii);
if abs(alpha_temp)<=0.01
alphaupindex=ii;
alpha_up=AA(ii); %the closest parameter value in the lower part of the nose curve
end
end
%================================================================================================================
x_up=XX(:,alphaupindex);
x_diff=(-x_low+x_up);
mm=find(a);
x_inter=x_diff(1:mm);
v=zeros(n,1);x0=x;% INITIALIZE NRS
% Obtain the smallest eigenvalue of Dy(g(x,y,p)) evaluated at the lower solution% 1) Starting Values for lambda0 and v0% inverse iteration to obtain estimates of lambda0 near zero % and v0
[f,J]=eval([CurrentSystem,'(data,x,[0;param],v)']);B=J(sub_strt+1:fn+1,sub_strt:fn);
lambda_sp=0;eig(B);
sign(det(B));rand('state',100)v=rand(n,1);
v=v/norm(v);
v_gen=zeros(no_gen-1,1);
v(1:no_gen-1)=v_gen;
options.disp=0;
sigma=0;
[try1,try2,flag3]=eigs(B,1,sigma,options);
for j=1:6 y_sp=(B-lambda_sp*eye(size(B)))\v(sub_strt:fn); lambda_sp=lambda_sp+norm(v(sub_strt:fn))^2/((v(sub_strt:fn))'*y_sp); v(sub_strt:fn)=y_sp/norm(y_sp); end
v;
ttt=lambda_sp;
norm(v(sub_strt:fn));
v_load=v(sub_strt:fn);
v(sub_strt:fn)=try1;
lambda_sp=try2;
%2) Locate singular point of algebraic equationsdeltalambda_sp=-lambda_sp/(NRS_Steps);for k=1:NRS_Steps+(0.1)*NRS_Steps ConvergenceFlag=0; for j=1:round(MaxIterations/ReportCycle), t0=clock; for i=1:ReportCycle, x_sub0=x(sub_strt:fn);
alpha_sp0=alpha_sp;
v0=v(sub_strt:fn); [f,J]=eval([CurrentSystem,'(data,x,[0;param],v)']);
JJ_sp=[ J(sub_strt+1:fn+1,sub_strt:fn) zeros(2*no_pq,2*no_pq) (J(no_gen+1:n+1,1:mm))*x_inter J(sub_strt+1:fn+1,fn+no_gen:2*fn) J(sub_strt+1:fn+1,sub_strt:fn)-lambda_sp*eye(2*no_pq) (J(sub_strt+1:fn+1,fn+1:fn+mm))*x_inter zeros(1,2*no_pq) (v(sub_strt:fn))'/norm(v(sub_strt:fn)) 0 ]; ff_sp=[f(sub_strt+1:fn+1) (J(sub_strt+1:fn+1,sub_strt:fn)-lambda_sp*eye(2*no_pq))*v(sub_strt:fn) norm(v(sub_strt:fn))-1 ]; delta_sp=-sparse(JJ_sp)\ff_sp; x(sub_strt:fn)=x_sub0+delta_sp(1:2*no_pq);
x(no_gen:(no_gen-1)+no_pv+2*no_pq)=x(sub_strt:fn); v(sub_strt:fn)=v0+delta_sp(2*no_pq+1:4*no_pq); alpha_sp=alpha_sp0+delta_sp(4*no_pq+1); x(1:mm)=(1-alpha_sp)*x_low(1:mm)+alpha_sp*x_up(1:mm);
end
AbsError=max([abs(x(sub_strt:fn)-x_sub0);abs(v(sub_strt:fn)-v0);abs(alpha_sp-alpha_sp0)]); if (x_sub0==0)&(v0==0) RelError='NA'; else RelError=AbsError/max([abs(x_sub0);abs(v0);abs(alpha_sp0)]); end % set state %VST_LFSetState; %VST_LFSetParam; % set LF control control errors set(AbsErrorDisp,'String',num2str(AbsError)); if isstr(RelError) set(RelErrorDisp,'String',RelError); else set(RelErrorDisp,'String',num2str(RelError)); end set(NumIterations,'String',num2str(j*ReportCycle)); set(IterationTime,'String',num2str(etime(clock,t0)/ReportCycle)); if (AbsError<=LFAbsTol) ... & ((~isstr(RelError)) ... & (RelError<=LFRelTol) ... | isstr(RelError)) ConvergenceFlag=1; if k==NRS_Steps+1 vpoc_sp=v(sub_strt:fn); wpoc_sp=-null(J(sub_strt+1:fn+1,sub_strt:fn)'); end break; end end if ConvergenceFlag==0 'NRS Failed to Converge' break; end if k==NRS_Steps+1
lambda_sp;
alpha_sp;
check1=J(sub_strt+1:fn+1,sub_strt:fn);
XX_sing=[XX_sing x];
if ~exist('Total_sing'),Total_sing=[];end
Total_sing=[Total_sing XX_sing];
end
% if alpha_sp>=alphamax_sp % return; % endXX_sp=[XX_sp x];
AA_sp=[AA_sp alpha_sp];PP_sp=[PP_sp param];
LAMBDA_SP=[LAMBDA_SP lambda_sp];
lambda_sp=lambda_sp+deltalambda_sp;
options.disp=0;
eig_Dyg=[eig_Dyg eigs(J(sub_strt+1:fn+1,sub_strt:fn),1,'SM',options)];
all_eig_Dyg=[all_eig_Dyg eig(J(sub_strt+1:fn+1,sub_strt:fn))];
end
for i=1:k_temp
paramx(i)=param(i);
end
for i=1:no_pq
ii=k_temp+i;
jj=k_temp+1+2*(i-1);
paramx(jj)=param(ii);
paramx(jj+1)=param(ii+no_pq);
end
param=paramx;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -