📄 backprop.cpp
字号:
#include "Net.h"#include <time.h>#include <string.h>#include <stdlib.h>#include <fstream>#include <iostream>using namespace NeuralNetwork;//产生太阳黑子的年的数目const int NUM_YEARS = 280;//提供给网络用于帮助预测的年的数目const int WINDOW_SIZE = 30;//正交归一后的每年的太阳黑子数据序列real Sunspots [NUM_YEARS] = { 0.0262, 0.0575, 0.0837, 0.1203, 0.1883, 0.3033, 0.1517, 0.1046, 0.0523, 0.0418, 0.0157, 0.0000, 0.0000, 0.0105, 0.0575, 0.1412, 0.2458, 0.3295, 0.3138, 0.2040, 0.1464, 0.1360, 0.1151, 0.0575, 0.1098, 0.2092, 0.4079, 0.6381, 0.5387, 0.3818, 0.2458, 0.1831, 0.0575, 0.0262, 0.0837, 0.1778, 0.3661, 0.4236, 0.5805, 0.5282, 0.3818, 0.2092, 0.1046, 0.0837, 0.0262, 0.0575, 0.1151, 0.2092, 0.3138, 0.4231, 0.4362, 0.2495, 0.2500, 0.1606, 0.0638, 0.0502, 0.0534, 0.1700, 0.2489, 0.2824, 0.3290, 0.4493, 0.3201, 0.2359, 0.1904, 0.1093, 0.0596, 0.1977, 0.3651, 0.5549, 0.5272, 0.4268, 0.3478, 0.1820, 0.1600, 0.0366, 0.1036, 0.4838, 0.8075, 0.6585, 0.4435, 0.3562, 0.2014, 0.1192, 0.0534, 0.1260, 0.4336, 0.6904, 0.6846, 0.6177, 0.4702, 0.3483, 0.3138, 0.2453, 0.2144, 0.1114, 0.0837, 0.0335, 0.0214, 0.0356, 0.0758, 0.1778, 0.2354, 0.2254, 0.2484, 0.2207, 0.1470, 0.0528, 0.0424, 0.0131, 0.0000, 0.0073, 0.0262, 0.0638, 0.0727, 0.1851, 0.2395, 0.2150, 0.1574, 0.1250, 0.0816, 0.0345, 0.0209, 0.0094, 0.0445, 0.0868, 0.1898, 0.2594, 0.3358, 0.3504, 0.3708, 0.2500, 0.1438, 0.0445, 0.0690, 0.2976, 0.6354, 0.7233, 0.5397, 0.4482, 0.3379, 0.1919, 0.1266, 0.0560, 0.0785, 0.2097, 0.3216, 0.5152, 0.6522, 0.5036, 0.3483, 0.3373, 0.2829, 0.2040, 0.1077, 0.0350, 0.0225, 0.1187, 0.2866, 0.4906, 0.5010, 0.4038, 0.3091, 0.2301, 0.2458, 0.1595, 0.0853, 0.0382, 0.1966, 0.3870, 0.7270, 0.5816, 0.5314, 0.3462, 0.2338, 0.0889, 0.0591, 0.0649, 0.0178, 0.0314, 0.1689, 0.2840, 0.3122, 0.3332, 0.3321, 0.2730, 0.1328, 0.0685, 0.0356, 0.0330, 0.0371, 0.1862, 0.3818, 0.4451, 0.4079, 0.3347, 0.2186, 0.1370, 0.1396, 0.0633, 0.0497, 0.0141, 0.0262, 0.1276, 0.2197, 0.3321, 0.2814, 0.3243, 0.2537, 0.2296, 0.0973, 0.0298, 0.0188, 0.0073, 0.0502, 0.2479, 0.2986, 0.5434, 0.4215, 0.3326, 0.1966, 0.1365, 0.0743, 0.0303, 0.0873, 0.2317, 0.3342, 0.3609, 0.4069, 0.3394, 0.1867, 0.1109, 0.0581, 0.0298, 0.0455, 0.1888, 0.4168, 0.5983, 0.5732, 0.4644, 0.3546, 0.2484, 0.1600, 0.0853, 0.0502, 0.1736, 0.4843, 0.7929, 0.7128, 0.7045, 0.4388, 0.3630, 0.1647, 0.0727, 0.0230, 0.1987, 0.7411, 0.9947, 0.9665, 0.8316, 0.5873, 0.2819, 0.1961, 0.1459, 0.0534, 0.0790, 0.2458, 0.4906, 0.5539, 0.5518, 0.5465, 0.3483, 0.3603, 0.1987, 0.1804, 0.0811, 0.0659, 0.1428, 0.4838, 0.8127 };//从低到高返回上面数组中一系列需要输出结果的样本class ArrayRangeExampleFactory : public ExampleFactory {public: ArrayRangeExampleFactory(int initLower, int initUpper) : currentExample(initLower), lower(initLower), upper(initUpper) { } void getExample(int inputSize, real* input, int outputSize, real* output) { memcpy(input, &Sunspots[currentExample-WINDOW_SIZE], WINDOW_SIZE*sizeof(real)); output[0] = Sunspots[currentExample]; currentExample++; if (currentExample > upper) currentExample = lower; } int numExamples() { return upper-lower+1; }private: int currentExample; int lower, upper;};//训练样本,测试样本,待评估样本的范围const int TRAIN_LWB = WINDOW_SIZE;const int TRAIN_UPB = 179;const int TEST_LWB = 180;const int TEST_UPB = 259;const int EVAL_LWB = 260;const int EVAL_UPB = NUM_YEARS - 1;//利用前WINDOW_SIZE的数据, 产生一个神经网络来预测某年的太阳黑子,预测结果放在评估样本中int main(int argc, char* argv[]){ using std::cout; using std::endl; //设定随机数种子, 随机权值矩阵 srand(35233); Net *net; //设置输入因子数, 隐含层数, 输出结果数 int layerSizes[] = { WINDOW_SIZE, 10, 1 }; //初始化网络, 设置层数, layersize, 学习速率, 动量因子, initgain net = new Net(3, layerSizes, 0.05, 0.5, 1.0); //初始化随机权值矩阵 net->randomizeWeights(); //设置训练样本 ArrayRangeExampleFactory training(TRAIN_LWB, TRAIN_UPB); //设置测试样本 ArrayRangeExampleFactory test (TEST_LWB, TEST_UPB); //设置参数自动训练 real error = net->autotrain(training, test, 10, 1.05f); //显示最终测试集误差,理论上应该是最小值 cout << "Final test set error: " << error << endl; //训练结束, 处理训练过程的分配的资源 net->doneTraining(); //比较待预测集的结果 for (int i=EVAL_LWB; i < EVAL_UPB; i++) { real output[1]; net->run(&Sunspots[i-WINDOW_SIZE], output); cout.precision(4); cout << "Predicted: " << output[0] << ", Actual: " << Sunspots[i] << endl; } std::ofstream out("backprop.nnw", std::ios::binary); net->save(out); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -