📄 center manifold-08.nb
字号:
\(\(\((a - c)\)\^2\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a + \
c)\)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + c\^3)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\(\@\(a\ \((\(-a\) + c)\)\)\ \((a + c)\)\ \((a\^2 +
c\^2)\)\)\/\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \
\((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((3\ a\^2 + 2\ a\ c - c\
\^2)\)\)\/\(a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a + c)\)\^3\ \((a\^4 \
- 4\ a\^2\ c\^2 - 2\ a\ c\^3 - c\^4)\)\)\/\(4\ a\ c\^2\ \((a\^6 + 2\ a\^5\ c \
- 6\ a\^4\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ c\^5 + c\^6)\)\)\)], \
"Output"],
Cell[BoxData[
\(\(-\(\(\@\(a\ \((\(-a\) + c)\)\)\ \((a + c)\)\^2\ \((a\^3 + a\^2\ c -
a\ c\^2 +
c\^3)\)\)\/\(2\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \
\((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\ \((a\^3 + a\^2\ c - 2\ a\ c\^2 -
c\^3)\)\)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a + c)\)\^4\ \((a\^3 \
+ a\^2\ c - a\ c\^2 + c\^3)\)\)\/\(4\ a\ c\^2\ \((a\^6 + 2\ a\^5\ c - 6\ a\^4\
\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ c\^5 + c\^6)\)\)\)], "Output"],
Cell[BoxData[
\(\(3\ \((\(-a\) + c)\)\ \((a + c)\)\^3\ \((\(-a\^3\) - 5\ a\^2\ c - 3\ a\
\ c\^2 + c\^3)\)\ \((a\^3 + a\^2\ c - a\ c\^2 + c\^3)\)\ \[Pi]\)\/\(16\ c\^2\ \
\((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + c\^3)\)\ \((a\^6 + 2\ a\^5\ c - 6\ a\^4\
\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ c\^5 + c\^6)\)\) + \(3\ \
\((\(-a\) + c)\)\ \@\(a\ \((\(-a\) + c)\)\)\ \((a + c)\)\^2\ \((a\^4 - 4\ \
a\^2\ c\^2 - 2\ a\ c\^3 - c\^4)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 + 8\ \
a\^2\ c\^3 - 3\ a\ c\^4 + c\^5)\)\ \[Pi]\)\/\(16\ a\ c\^2\ \((a\^5 + a\^4\ c \
- 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 + c\^5)\)\ \((a\^6 + 2\ a\^5\ c \
- 6\ a\^4\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ c\^5 + c\^6)\)\) - \(\
\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((\(-a\^3\) - 5\ a\^2\ c - 3\ a\
\ c\^2 + c\^3)\)\ \((\(\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 - 6\ a\ c\^3 - \
c\^4)\)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\) + \
\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\
\ c\^2 + 2\ a\ c\^3 - c\^4)\)\)\/\(c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + \
c\^4)\)\))\)\ \[Pi]\)\/\(12\ c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + c\^3)\)\
\) - \(5\ \@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 + c\^4)\)\ \((\(\@\(a\ \((\(-a\) \
+ c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - \
2\ a\^2\ c\^2 - 6\ a\ c\^3 - c\^4)\)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ \
a\ c\^3 + c\^4)\)\) + \(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 \
+ 4\ a\^3\ c - 2\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\)\/\(c\ \((a\^4 - 6\ a\^2\
\ c\^2 + 4\ a\ c\^3 + c\^4)\)\))\)\ \[Pi]\)\/\(12\ a\ c\ \((a\^4 - 6\ a\^2\ c\
\^2 + 4\ a\ c\^3 + c\^4)\)\) +
1\/24\ \((\(\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\
\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 - 6\ a\ c\^3 - \
c\^4)\)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\) + \
\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\
\ c\^2 + 2\ a\ c\^3 - c\^4)\)\)\/\(c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + \
c\^4)\)\))\)\^2\ \[Pi] -
1\/4\ \((\(-\(\(\@\(a\ \((\(-a\) + c)\)\)\ \((a + c)\)\^2\ \((a\^3 +
a\^2\ c - a\ c\^2 + c\^3)\)\ \((a\^4 + 4\ a\^3\ c -
2\ a\^2\ c\^2 + 2\ a\ c\^3 -
c\^4)\)\)\/\(2\ c\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 -
c\^3)\)\ \((a\^3 + a\^2\ c - 2\ a\ c\^2 -
c\^3)\)\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 +
c\^4)\)\)\)\) - \(\((\(-a\) + c)\)\ \((a + c)\)\^2\ \
\((a\^3 + a\^2\ c - a\ c\^2 + c\^3)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 - \
2\ a\^2\ c\^3 - 3\ a\ c\^4 - c\^5)\)\)\/\(2\ c\ \((a\^3 + a\^2\ c - 5\ a\ \
c\^2 - c\^3)\)\ \((a\^3 + a\^2\ c - 2\ a\ c\^2 - c\^3)\)\ \((a\^5 + a\^4\ c - \
6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 + c\^5)\)\) + \(\((\(-a\) + c)\)\ \
\((a + c)\)\^2\ \((\(-a\^3\) - 5\ a\^2\ c - 3\ a\ c\^2 + c\^3)\)\ \((a\^4 - 4\
\ a\^2\ c\^2 - 2\ a\ c\^3 - c\^4)\)\)\/\(4\ c\^2\ \((\(-a\^3\) - a\^2\ c + 5\ \
a\ c\^2 + c\^3)\)\ \((a\^6 + 2\ a\^5\ c - 6\ a\^4\ c\^2 - 9\ a\^3\ c\^3 + 8\ \
a\^2\ c\^4 + 7\ a\ c\^5 + c\^6)\)\) + \(\((\(-a\) + c)\)\ \@\(a\ \((\(-a\) + \
c)\)\)\ \((a + c)\)\^3\ \((a\^3 + a\^2\ c - a\ c\^2 + c\^3)\)\ \((a\^5 + 3\ a\
\^4\ c - 6\ a\^3\ c\^2 + 8\ a\^2\ c\^3 - 3\ a\ c\^4 + c\^5)\)\)\/\(4\ a\ c\^2\
\ \((a\^5 + a\^4\ c - 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 + c\^5)\)\ \
\((a\^6 + 2\ a\^5\ c - 6\ a\^4\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ \
c\^5 + c\^6)\)\) + \(2\ \@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\
\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 + c\^4)\)\ \((b + \
\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\
\ c\^2 + 2\ a\ c\^3 - c\^4)\)\)\/\(c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + \
c\^4)\)\))\)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\))\)\ \
\[Pi]\)], "Output"],
Cell[BoxData[
\(\(-\(\((\((a\^13\ \((3 + 8\ c)\) +
6\ c\^12\ \@\(a\ \((\(-a\) + c)\)\)\ \((1 +
2\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\))\) +
a\^12\ \((63\ c\^2 + 3\ \@\(a\ \((\(-a\) + c)\)\) +
c\ \((30 - 22\ \@\(a\ \((\(-a\) + c)\)\))\))\) -
a\ c\^11\ \((11\ c\^2 -
96\ b\ \@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) \
+ c)\)\)\/\(a + c\)\) + c\ \((3 + 26\ \@\(a\ \((\(-a\) + c)\)\))\))\) +
a\^4\ c\^8\ \((291\ c\^2 +
c\ \((60 + 74\ \@\(a\ \((\(-a\) + c)\)\))\) +
3\ \@\(a\ \((\(-a\) + c)\)\)\ \((17 -
48\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + 2\ a\^8\ c\^4\ \((413\ c\^2 +
c\ \((\(-81\) + 402\ \@\(a\ \((\(-a\) + c)\)\))\) +
6\ \@\(a\ \((\(-a\) + c)\)\)\ \((1 -
37\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) - 2\ a\^10\ c\^2\ \((185\ c\^2 +
6\ c\ \((\(-5\) + 33\ \@\(a\ \((\(-a\) + c)\)\))\) +
3\ \@\(a\ \((\(-a\) + c)\)\)\ \((11 -
14\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + a\^3\ c\^9\ \((\(-69\)\ c\^2 +
7\ c\ \((9 + 22\ \@\(a\ \((\(-a\) + c)\)\))\) +
12\ \@\(a\ \((\(-a\) + c)\)\)\ \((2 -
13\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + 3\ a\^11\ c\ \((21\ c\^2 +
c\ \((31 - 66\ \@\(a\ \((\(-a\) + c)\)\))\) +
2\ \@\(a\ \((\(-a\) + c)\)\)\ \((1 +
2\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + a\^9\ c\^3\ \((\(-315\)\ c\^2 +
5\ c\ \((\(-27\) + 86\ \@\(a\ \((\(-a\) + c)\)\))\) +
12\ \@\(a\ \((\(-a\) + c)\)\)\ \((\(-11\) +
6\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + 2\ a\^2\ c\^10\ \((\(-43\)\ c\^2 +
c\ \((9 - 10\ \@\(a\ \((\(-a\) + c)\)\))\) +
6\ \@\(a\ \((\(-a\) + c)\)\)\ \((2 +
13\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + a\^5\ c\^7\ \((22\ c\^2 +
c\ \((\(-9\) + 28\ \@\(a\ \((\(-a\) + c)\)\))\) +
12\ \@\(a\ \((\(-a\) + c)\)\)\ \((1 +
66\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) + 2\ a\^6\ c\^6\ \((\(-350\)\ c\^2 +
c\ \((\(-3\) + 52\ \@\(a\ \((\(-a\) + c)\)\))\) +
3\ \@\(a\ \((\(-a\) + c)\)\)\ \((\(-21\) +
88\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\))\))\) - 2\ a\^7\ c\^5\ \((\(-131\)\ c\^2 +
c\ \((6 + 274\ \@\(a\ \((\(-a\) + c)\)\))\) +
3\ \@\(a\ \((\(-a\) + c)\)\)\ \((1 +
104\ b\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\
\))\))\))\)\ \[Pi])\)/\((24\ a\ c\^2\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 - \
c\^3)\)\^2\ \((a\^5 + a\^4\ c - 3\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 2\ a\ c\^4 +
c\^5)\))\)\)\)\)], "Output"]
}, Open ]]
},
FrontEndVersion->"5.0 for Microsoft Windows",
ScreenRectangle->{{0, 1440}, {0, 817}},
WindowSize->{1432, 783},
WindowMargins->{{0, Automatic}, {Automatic, 0}}
]
(*******************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of the file. The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[1776, 53, 5045, 81, 1295, "Input"],
Cell[6824, 136, 218, 3, 69, "Output"],
Cell[7045, 141, 201, 3, 69, "Output"],
Cell[7249, 146, 275, 4, 69, "Output"],
Cell[7527, 152, 201, 3, 69, "Output"],
Cell[7731, 157, 272, 4, 68, "Output"],
Cell[8006, 163, 231, 3, 69, "Output"],
Cell[8240, 168, 189, 3, 69, "Output"],
Cell[8432, 173, 275, 4, 69, "Output"],
Cell[8710, 179, 189, 3, 69, "Output"],
Cell[8902, 184, 226, 3, 68, "Output"],
Cell[9131, 189, 156, 2, 69, "Output"],
Cell[9290, 193, 214, 3, 73, "Output"],
Cell[9507, 198, 166, 2, 69, "Output"],
Cell[9676, 202, 214, 3, 73, "Output"],
Cell[9893, 207, 155, 2, 68, "Output"],
Cell[10051, 211, 260, 4, 69, "Output"],
Cell[10314, 217, 316, 5, 73, "Output"],
Cell[10633, 224, 249, 3, 69, "Output"],
Cell[10885, 229, 4102, 55, 648, "Output"],
Cell[14990, 286, 3275, 51, 348, "Output"]
}, Open ]]
}
]
*)
(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -