📄 center manifold-08.nb
字号:
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.0'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 18281, 340]*)
(*NotebookOutlinePosition[ 18925, 362]*)
(* CellTagsIndexPosition[ 18881, 358]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
\(a\_1 = \(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 + c\^4)\)\(\ \
\)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\), "\n",
\(a\_2 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 + \
4\ a\^3\ c - 2\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\(\ \)\)\/\(c\ \((a\^4 - 6\ \
a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\), "\n",
\(a\_3 = \((\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 + 8\ a\^2\ c\^3 -
3\ a\ c\^4 + c\^5)\)\ )\)/\((a\ c\ \((a\^5 + a\^4\ c -
6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 +
c\^5)\))\)\), "\n",
\(a\_5\ = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 \
+ 4\ a\^3\ c - 2\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\(\ \)\)\/\(c\ \((a\^4 - 6\
\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\), "\n",
\(a\_6 = \(-\(\(\(2\)\(\ \)\(\@\(a\ \((\(-a\) +
c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a +
c\)\)\)\(\ \)\((a\^3 + 4\ a\^2\ c - 5\ a\ c\^2 +
2\ c\^3)\)\(\ \)\)\/\(a\^5 + a\^4\ c - 6\ a\^3\ c\^2 -
2\ a\^2\ c\^3 + 5\ a\ c\^4 + c\^5\)\)\)\n\), "\n",
\(b\_1\ = \(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 - 6\ a\ c\^3 \
- c\^4)\)\(\ \)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + \
c\^4)\)\)\), "\n",
\(b\_2 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \
\)\((\(-a\^3\) - 5\ a\^2\ c - 3\ a\ c\^2 + c\^3)\)\(\ \)\)\/\(c\ \((\(-a\^3\) \
- a\^2\ c + 5\ a\ c\^2 + c\^3)\)\)\), "\n",
\(b\_3 = \((\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 -
3\ a\ c\^4 - c\^5)\)\ )\)/\((a\ c\ \((a\^5 + a\^4\ c -
6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 +
c\^5)\))\)\), "\n",
\(b\_5 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \
\)\((\(-a\^3\) - 5\ a\^2\ c - 3\ a\ c\^2 + c\^3)\)\(\ \)\)\/\(c\ \((\(-a\^3\) \
- a\^2\ c + 5\ a\ c\^2 + c\^3)\)\)\), "\n",
\(b\_6 = \(-\(\(\(2\)\(\ \)\(\@\(a\ \((\(-a\) +
c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a +
c\)\)\)\(\ \)\((a\^2 + 5\ a\ c +
2\ c\^2)\)\(\ \)\)\/\(a\^4 + 2\ a\^3\ c - 4\ a\^2\ c\^2 -
6\ a\ c\^3 - c\^4\)\)\)\), "\n",
\(c\_1 = \(\(a\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \
\)\(\((a + c)\)\^2\)\(\ \)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + \
c\^3)\)\)\), "\n",
\(c\_2 = \(-\(\(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\((a +
c)\)\(\ \)\((a\^2 +
c\^2)\)\(\ \)\)\/\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\)\)\)\), "\n",
\(c\_3 = \(\(\((a - c)\)\^2\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a \
+ c\)\)\)\(\ \)\((a + c)\)\(\ \)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 \
+ c\^3)\)\)\), "\n",
\(c\_5 = \(-\(\(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\((a +
c)\)\(\ \)\((a\^2 +
c\^2)\)\(\ \)\)\/\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\)\)\)\), "\n",
\(c\_6 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \)\((3\ \
a\^2 + 2\ a\ c - c\^2)\)\(\ \)\)\/\(a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3\)\), "\
\[IndentingNewLine]",
\(d\_1 = \(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a + c)\)\^3\ \
\((a\^4 - 4\ a\^2\ c\^2 - 2\ a\ c\^3 - c\^4)\)\)\/\(4\ a\ c\^2\ \((a\^6 + 2\ \
a\^5\ c - 6\ a\^4\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ c\^5 + \
c\^6)\)\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(d\_2 = \(-\(\((\@\(a\ \((\(-a\) + c)\)\)\ \((a + c)\)\^2\ \((a\^3 +
a\^2\ c - a\ c\^2 +
c\^3)\))\)/\((2\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\ \((a\^3 + a\^2\ c -
2\ a\ c\^2 -
c\^3)\))\)\)\)\[IndentingNewLine]\), "\[IndentingNewLine]", \
\(d\_3 = \(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a + c)\)\^4\ \
\((a\^3 + a\^2\ c - a\ c\^2 + c\^3)\)\)\/\(4\ a\ c\^2\ \((a\^6 + 2\ a\^5\ c - \
6\ a\^4\ c\^2 - 9\ a\^3\ c\^3 + 8\ a\^2\ c\^4 + 7\ a\ c\^5 + c\^6)\)\)\), "\
\[IndentingNewLine]",
\(d =
5\/16\ 2\ \[Pi]\ \((\(-2\)\ a\_1\ \(a\_2 + b\_1\)\/3)\) +
1\/16\ 2\ \[Pi]\ \((\(-2\)\ b\_2\ \(a\_2 + b\_1\)\/3)\) +
1\/16\ 2\ \[Pi]\ \((\((\ a\_2 + b\_1)\)\ \(a\_2 + b\_1\)\/3)\) +
3\/8\ 2\ \[Pi]\ \ \(a\_3\) d\_1 -
1\/8\ 2\ \[Pi]\ \((\ \(a\_3\) d\_3 + \ \(a\_5\) d\_2 + \ \(b\_3\)
d\_2 + \ \(d\_1\) b\_5 + 2\ \(a\_1\) \((a\_2 + b)\))\) +
3\/8\ 2\ \[Pi]\ \ \(b\_5\) d\_3\), "\[IndentingNewLine]",
\(Simplify[d]\)}], "Input"],
Cell[BoxData[
\(\(\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 + c\^4)\)\)\/\(a\ c\ \((a\^4 - 6\ \
a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\
\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\)\/\(c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\
\^3 + c\^4)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 + 8\ a\^2\ c\^3 - 3\ a\ c\^4 + \
c\^5)\)\)\/\(a\ c\ \((a\^5 + a\^4\ c - 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ \
c\^4 + c\^5)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\
\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\)\/\(c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\
\^3 + c\^4)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\(2\ \@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^3 + 4\ a\^2\ c - 5\ a\ c\^2 +
2\ c\^3)\)\)\/\(a\^5 + a\^4\ c - 6\ a\^3\ c\^2 -
2\ a\^2\ c\^3 + 5\ a\ c\^4 + c\^5\)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 - 6\ a\ c\^3 - c\^4)\)\)\/\(a\ c\ \
\((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((\(-a\^3\) - 5\ a\^2\ \
c - 3\ a\ c\^2 + c\^3)\)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + \
c\^3)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 - 3\ a\ c\^4 - \
c\^5)\)\)\/\(a\ c\ \((a\^5 + a\^4\ c - 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ \
c\^4 + c\^5)\)\)\)], "Output"],
Cell[BoxData[
\(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((\(-a\^3\) - 5\ a\^2\ \
c - 3\ a\ c\^2 + c\^3)\)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + \
c\^3)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\(2\ \@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^2 + 5\ a\ c + 2\ c\^2)\)\)\/\(a\^4 + 2\ a\^3\ c -
4\ a\^2\ c\^2 - 6\ a\ c\^3 - c\^4\)\)\)\)], "Output"],
Cell[BoxData[
\(\(a\ \@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \((a + c)\)\^2\)\/\(c\
\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + c\^3)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\(\@\(a\ \((\(-a\) + c)\)\)\ \((a + c)\)\ \((a\^2 +
c\^2)\)\)\/\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\ \
\((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\)\)\)\)], "Output"],
Cell[BoxData[
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -