📄 center manifold-07.nb
字号:
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.0'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 450194, 6382]*)
(*NotebookOutlinePosition[ 450838, 6404]*)
(* CellTagsIndexPosition[ 450794, 6400]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
\(\[Omega] = \@\(a\ \((\(-a\) + c)\)\)\), "\n",
\(\[Lambda] = \(\(-2\) \(a\)\(\ \)\(c\)\(\ \)\)\/\(a + c\)\), "\n",
\(a\_1 = \(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 + c\^4)\)\(\ \
\)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\), "\n",
\(a\_2 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 + \
4\ a\^3\ c - 2\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\(\ \)\)\/\(c\ \((a\^4 - 6\ \
a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\), "\n",
\(a\_3 = \((\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 + 8\ a\^2\ c\^3 -
3\ a\ c\^4 + c\^5)\)\ )\)/\((a\ c\ \((a\^5 + a\^4\ c -
6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 +
c\^5)\))\)\), "\n",
\(a\_5\ = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 \
+ 4\ a\^3\ c - 2\ a\^2\ c\^2 + 2\ a\ c\^3 - c\^4)\)\(\ \)\)\/\(c\ \((a\^4 - 6\
\ a\^2\ c\^2 + 4\ a\ c\^3 + c\^4)\)\)\), "\n",
\(a\_6 = \(-\(\(\(2\)\(\ \)\(\@\(a\ \((\(-a\) +
c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a +
c\)\)\)\(\ \)\((a\^3 + 4\ a\^2\ c - 5\ a\ c\^2 +
2\ c\^3)\)\(\ \)\)\/\(a\^5 + a\^4\ c - 6\ a\^3\ c\^2 -
2\ a\^2\ c\^3 + 5\ a\ c\^4 +
c\^5\)\)\)\[IndentingNewLine]\), "\n",
\(b\_1\ = \(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\)\(\ \)\((a\^4 + 4\ a\^3\ c - 2\ a\^2\ c\^2 - 6\ a\ c\^3 \
- c\^4)\)\(\ \)\)\/\(a\ c\ \((a\^4 - 6\ a\^2\ c\^2 + 4\ a\ c\^3 + \
c\^4)\)\)\), "\n",
\(b\_2 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \
\)\((\(-a\^3\) - 5\ a\^2\ c - 3\ a\ c\^2 + c\^3)\)\(\ \)\)\/\(c\ \((\(-a\^3\) \
- a\^2\ c + 5\ a\ c\^2 + c\^3)\)\)\), "\n",
\(b\_3 = \((\@\(a\ \((\(-a\) + c)\)\)\ \@\(\(a\ c\ \((\(-a\) + \
c)\)\)\/\(a + c\)\)\ \((a\^5 + 3\ a\^4\ c - 6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 -
3\ a\ c\^4 - c\^5)\)\ )\)/\((a\ c\ \((a\^5 + a\^4\ c -
6\ a\^3\ c\^2 - 2\ a\^2\ c\^3 + 5\ a\ c\^4 +
c\^5)\))\)\), "\n",
\(b\_5 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \
\)\((\(-a\^3\) - 5\ a\^2\ c - 3\ a\ c\^2 + c\^3)\)\(\ \)\)\/\(c\ \((\(-a\^3\) \
- a\^2\ c + 5\ a\ c\^2 + c\^3)\)\)\), "\n",
\(b\_6 = \(-\(\(\(2\)\(\ \)\(\@\(a\ \((\(-a\) +
c)\)\)\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a +
c\)\)\)\(\ \)\((a\^2 + 5\ a\ c +
2\ c\^2)\)\(\ \)\)\/\(a\^4 + 2\ a\^3\ c - 4\ a\^2\ c\^2 -
6\ a\ c\^3 - c\^4\)\)\)\), "\n",
\(c\_1 = \(\(a\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \
\)\(\((a + c)\)\^2\)\(\ \)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 + \
c\^3)\)\)\), "\n",
\(c\_2 = \(-\(\(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\((a +
c)\)\(\ \)\((a\^2 +
c\^2)\)\(\ \)\)\/\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\)\)\)\), "\n",
\(c\_3 = \(\(\((a - c)\)\^2\)\(\ \)\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a \
+ c\)\)\)\(\ \)\((a + c)\)\(\ \)\)\/\(c\ \((\(-a\^3\) - a\^2\ c + 5\ a\ c\^2 \
+ c\^3)\)\)\), "\n",
\(c\_5 = \(-\(\(\(\@\(a\ \((\(-a\) + c)\)\)\)\(\ \)\((a +
c)\)\(\ \)\((a\^2 +
c\^2)\)\(\ \)\)\/\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + \
c\)\)\ \((a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3)\)\)\)\)\), "\n",
\(c\_6 = \(\(\@\(\(a\ c\ \((\(-a\) + c)\)\)\/\(a + c\)\)\)\(\ \)\((3\ \
a\^2 + 2\ a\ c - c\^2)\)\(\ \)\)\/\(a\^3 + a\^2\ c - 5\ a\ c\^2 - c\^3\)\), "\
\n",
\(d\_1 = \(\[Lambda]\^2\ c\_1 + 2\ \[Omega]\^2\ c\_1 - \[Lambda]\ \
\[Omega]\ c\_2\)\/\(\[Lambda]\ \((\[Lambda]\^2 + 4\ \[Omega]\^2)\)\)\), "\n", \
\(d\_2 = \(2\ \[Omega]\ c\_1 + \[Lambda]\ c\_2\)\/\(\[Lambda]\^2 + 4\ \
\[Omega]\^2\)\), "\n",
\(d\_3 = \(\[Omega]\ \((2\ \[Omega]\ c\_1 + \[Lambda]\ c\_2)\)\)\/\(\
\[Lambda]\ \((\[Lambda]\^2 + 4\ \[Omega]\^2)\)\)\), "\n",
\(d\_4 = \(-\(1\/\(\[Lambda]\^7 + 14\ \[Lambda]\^5\ \[Omega]\^2 +
49\ \[Lambda]\^3\ \[Omega]\^4 +
36\ \[Lambda]\ \[Omega]\^6\)\)\) \((2\ \[Lambda]\^4\ \[Omega]\
\ b\_1\ c\_1 + 10\ \[Lambda]\^2\ \[Omega]\^3\ b\_1\ c\_1 -
12\ \[Omega]\^5\ b\_1\ c\_1 -
2\ \[Lambda]\^3\ \[Omega]\^2\ b\_2\ c\_1 +
2\ \[Lambda]\ \[Omega]\^4\ b\_2\ c\_1 + \[Lambda]\^5\ b\_1\ c\_2 \
+ 5\ \[Lambda]\^3\ \[Omega]\^2\ b\_1\ c\_2 -
6\ \[Lambda]\ \[Omega]\^4\ b\_1\ c\_2 - \[Lambda]\^4\ \[Omega]\ b\
\_2\ c\_2 + \[Lambda]\^2\ \[Omega]\^3\ b\_2\ c\_2 -
2\ \[Omega]\ a\_2\ \((\((\[Lambda]\^4 +
3\ \[Lambda]\^2\ \[Omega]\^2 +
6\ \[Omega]\^4)\)\ c\_1 - \[Lambda]\ \[Omega]\ \((2\ \
\[Lambda]\^2 +
3\ \[Omega]\^2)\)\ c\_2)\) + \[Lambda]\ a\_1\ \((2\ \
\((\[Lambda]\^4 + 8\ \[Lambda]\^2\ \[Omega]\^2 +
11\ \[Omega]\^4)\)\ c\_1 - \[Lambda]\ \[Omega]\ \((3\ \
\[Lambda]\^2 + 17\ \[Omega]\^2)\)\ c\_2)\) - \[Lambda]\^5\ c\_1\ c\_3 -
7\ \[Lambda]\^3\ \[Omega]\^2\ c\_1\ c\_3 -
12\ \[Lambda]\ \[Omega]\^4\ c\_1\ c\_3 +
2\ \[Lambda]\^4\ \[Omega]\ c\_2\ c\_3 +
8\ \[Lambda]\^2\ \[Omega]\^3\ c\_2\ c\_3 + \[Lambda]\^4\ \[Omega]\
\ c\_1\ c\_5 + \[Lambda]\^2\ \[Omega]\^3\ c\_1\ c\_5 +
18\ \[Omega]\^5\ c\_1\ c\_5 -
3\ \[Lambda]\^3\ \[Omega]\^2\ c\_2\ c\_5 +
3\ \[Lambda]\ \[Omega]\^4\ c\_2\ c\_5)\)\), "\n",
\(d\_5 = \(1\/\(\[Lambda]\^7 + 14\ \[Lambda]\^5\ \[Omega]\^2 +
49\ \[Lambda]\^3\ \[Omega]\^4 +
36\ \[Lambda]\ \[Omega]\^6\)\) \((\(-10\)\ \[Lambda]\^3\ \
\[Omega]\^2\ b\_1\ c\_1 - 30\ \[Lambda]\ \[Omega]\^4\ b\_1\ c\_1 -
2\ \[Lambda]\^4\ \[Omega]\ b\_2\ c\_1 +
2\ \[Lambda]\^2\ \[Omega]\^3\ b\_2\ c\_1 -
5\ \[Lambda]\^4\ \[Omega]\ b\_1\ c\_2 -
15\ \[Lambda]\^2\ \[Omega]\^3\ b\_1\ c\_2 - \[Lambda]\^5\ b\_2\ c\
\_2 + \[Lambda]\^3\ \[Omega]\^2\ b\_2\ c\_2 - \((\[Lambda]\^2 +
3\ \[Omega]\^2)\)\ a\_1\ \((4\ \((2\ \[Lambda]\^2\ \[Omega] \
+ 3\ \[Omega]\^3)\)\ c\_1 + \[Lambda]\ \((\[Lambda]\^2 -
6\ \[Omega]\^2)\)\ c\_2)\) -
2\ \[Lambda]\ a\_2\ \((\((\[Lambda]\^4 +
3\ \[Lambda]\^2\ \[Omega]\^2 +
6\ \[Omega]\^4)\)\ c\_1 - \[Lambda]\ \[Omega]\ \((2\ \
\[Lambda]\^2 + 3\ \[Omega]\^2)\)\ c\_2)\) +
5\ \[Lambda]\^4\ \[Omega]\ c\_1\ c\_3 +
17\ \[Lambda]\^2\ \[Omega]\^3\ c\_1\ c\_3 +
18\ \[Omega]\^5\ c\_1\ c\_3 + \[Lambda]\^5\ c\_2\ c\_3 -
2\ \[Lambda]\^3\ \[Omega]\^2\ c\_2\ c\_3 -
9\ \[Lambda]\ \[Omega]\^4\ c\_2\ c\_3 + \[Lambda]\^5\ c\_1\ c\_5 \
+ \[Lambda]\^3\ \[Omega]\^2\ c\_1\ c\_5 +
18\ \[Lambda]\ \[Omega]\^4\ c\_1\ c\_5 -
3\ \[Lambda]\^4\ \[Omega]\ c\_2\ c\_5 +
3\ \[Lambda]\^2\ \[Omega]\^3\ c\_2\ c\_5)\)\), "\n",
\(d\_6 = \(-\(1\/\(\[Lambda]\^7 + 14\ \[Lambda]\^5\ \[Omega]\^2 +
49\ \[Lambda]\^3\ \[Omega]\^4 +
36\ \[Lambda]\ \[Omega]\^6\)\)\) \((20\ \[Lambda]\^2\ \
\[Omega]\^3\ b\_1\ c\_1 + 8\ \[Lambda]\^3\ \[Omega]\^2\ b\_2\ c\_1 +
12\ \[Lambda]\ \[Omega]\^4\ b\_2\ c\_1 +
10\ \[Lambda]\^3\ \[Omega]\^2\ b\_1\ c\_2 +
4\ \[Lambda]\^4\ \[Omega]\ b\_2\ c\_2 +
6\ \[Lambda]\^2\ \[Omega]\^3\ b\_2\ c\_2 +
2\ \[Lambda]\ \[Omega]\ a\_1\ \((4\ \((2\ \[Lambda]\^2\ \[Omega] \
+ 3\ \[Omega]\^3)\)\ c\_1 + \[Lambda]\ \((\[Lambda]\^2 -
6\ \[Omega]\^2)\)\ c\_2)\) + \[Lambda]\^2\ a\_2\ \((2\
\ \((3\ \[Lambda]\^2\ \[Omega] +
7\ \[Omega]\^3)\)\ c\_1 + \[Lambda]\ \((\[Lambda]\^2 \
- \[Omega]\^2)\)\ c\_2)\) - 12\ \[Lambda]\^3\ \[Omega]\^2\ c\_1\ c\_3 -
18\ \[Lambda]\ \[Omega]\^4\ c\_1\ c\_3 -
3\ \[Lambda]\^4\ \[Omega]\ c\_2\ c\_3 +
3\ \[Lambda]\^2\ \[Omega]\^3\ c\_2\ c\_3 -
4\ \[Lambda]\^4\ \[Omega]\ c\_1\ c\_5 -
4\ \[Lambda]\^2\ \[Omega]\^3\ c\_1\ c\_5 +
18\ \[Omega]\^5\ c\_1\ c\_5 - \[Lambda]\^5\ c\_2\ c\_5 +
2\ \[Lambda]\^3\ \[Omega]\^2\ c\_2\ c\_5 +
9\ \[Lambda]\ \[Omega]\^4\ c\_2\ c\_5)\)\), "\n",
\(d\_7 = \(-\(1\/\(\[Lambda]\^7 + 14\ \[Lambda]\^5\ \[Omega]\^2 +
49\ \[Lambda]\^3\ \[Omega]\^4 +
36\ \[Lambda]\ \[Omega]\^6\)\)\) \((\[Omega]\ \((20\ \
\[Lambda]\ \[Omega]\^3\ b\_1\ c\_1 +
8\ \[Lambda]\^2\ \[Omega]\^2\ b\_2\ c\_1 +
12\ \[Omega]\^4\ b\_2\ c\_1 +
10\ \[Lambda]\^2\ \[Omega]\^2\ b\_1\ c\_2 +
4\ \[Lambda]\^3\ \[Omega]\ b\_2\ c\_2 +
6\ \[Lambda]\ \[Omega]\^3\ b\_2\ c\_2 +
2\ \[Omega]\ a\_1\ \((4\ \((2\ \[Lambda]\^2\ \[Omega] +
3\ \[Omega]\^3)\)\ c\_1 + \[Lambda]\ \((\[Lambda]\
\^2 - 6\ \[Omega]\^2)\)\ c\_2)\) + \[Lambda]\ a\_2\ \((2\ \((3\ \[Lambda]\^2\ \
\[Omega] +
7\ \[Omega]\^3)\)\ c\_1 + \[Lambda]\ \((\[Lambda]\
\^2 - \[Omega]\^2)\)\ c\_2)\) - 12\ \[Lambda]\^2\ \[Omega]\^2\ c\_1\ c\_3 -
18\ \[Omega]\^4\ c\_1\ c\_3 -
3\ \[Lambda]\^3\ \[Omega]\ c\_2\ c\_3 +
3\ \[Lambda]\ \[Omega]\^3\ c\_2\ c\_3 -
6\ \[Lambda]\^3\ \[Omega]\ c\_1\ c\_5 -
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -