⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 untitled-3.nb

📁 该程序是用来画微分系统时间序列图相图等相关的图形的,可以很好的对一个微分系统进行分析
💻 NB
📖 第 1 页 / 共 2 页
字号:
(************** Content-type: application/mathematica **************
                     CreatedBy='Mathematica 5.0'

                    Mathematica-Compatible Notebook

This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.

To get the notebook into a Mathematica-compatible application, do
one of the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the
  application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info@wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
*******************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     16724,        339]*)
(*NotebookOutlinePosition[     17386,        362]*)
(*  CellTagsIndexPosition[     17342,        358]*)
(*WindowFrame->Normal*)



Notebook[{

Cell[CellGroupData[{
Cell[BoxData[{
    RowBox[{"p", "=", 
      RowBox[{"(", GridBox[{
            {"1", "0", \(\(-35\)\/\(w\^2 + k\^2\)\), "0"},
            {"1", \(-\(w\/35\)\), \(k\/\(w^2 + k^2\)\), "0"},
            {"0", "0", "0", "1"},
            {\(-k\), "w", "1", "0"}
            }], ")"}]}], "\[IndentingNewLine]", \(Det[
      p]\), "\[IndentingNewLine]", 
    RowBox[{\(Q = Inverse[p]\), 
      "\[IndentingNewLine]"}], "\[IndentingNewLine]", }], "Input"],

Cell[BoxData[
    \({{1, 0, \(-\(35\/\(k\^2 + w\^2\)\)\), 0}, {1, \(-\(w\/35\)\), 
        k\/\(k\^2 + w\^2\), 0}, {0, 0, 0, 1}, {\(-k\), w, 1, 0}}\)], "Output"],

Cell[BoxData[
    \(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\)], "Output"],

Cell[BoxData[
    \({{\(w\/35 + \(k\ w\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\), \(35\ w\)\/\(\((k\^2 + w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\
\))\)\), 0, 
        w\/\(\((k\^2 + w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, \
{\(1 + k\^2\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), \
\(\(-1\) + \(35\ k\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\
\), 0, \(35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\
\^2 + w\^2\)\)}, {\(\(-w\) + \(k\ w\)\/35\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\), w\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 0, 
        w\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, {0, 0, 1, 
        0}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
    RowBox[{"p", "=", 
      RowBox[{"(", GridBox[{
            {"1", "0", \(\(-35\)\/\(w\^2 + k\^2\)\), "0"},
            {"1", \(-\(w\/35\)\), \(k\/\(w^2 + k^2\)\), "0"},
            {"0", "0", "0", "1"},
            {\(-k\), "w", "1", "0"}
            }], 
        ")"}]}], "\[IndentingNewLine]", \(m = {{\(w\/35 + \(k\ w\)\/\(k\^2 + \
w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), \(35\ w\)\/\(\((k\^2 + \
w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\), 0, 
          w\/\(\((k\^2 + w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\))\)\)}, {\(1 + k\^2\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\
\^2\)\), \(\(-1\) + \(35\ k\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 \
+ w\^2\)\), 
          0, \(35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\)\)}, {\(\(-w\) + \(k\ w\)\/35\)\/\(w\/35 + \(35\ w\)\/\(k\
\^2 + w\^2\)\), w\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 0, 
          w\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, {0, 0, 1, 
          0}}\), "\[IndentingNewLine]", \(p . m\)}], "Input"],

Cell[BoxData[
    \({{1, 0, \(-\(35\/\(k\^2 + w\^2\)\)\), 0}, {1, \(-\(w\/35\)\), 
        k\/\(k\^2 + w\^2\), 0}, {0, 0, 0, 1}, {\(-k\), w, 1, 0}}\)], "Output"],

Cell[BoxData[
    \({{\(w\/35 + \(k\ w\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\), \((35\ w)\)/\((\((k\^2 + 
                  w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\), 0, 
        w/\((\((k\^2 + 
                  w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\)}, {\(1 \
+ k\^2\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), \(\(-1\) + \
\(35\ k\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 
        0, \(35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\)\)}, {\(\(-w\) + \(k\ w\)\/35\)\/\(w\/35 + \(35\ w\)\/\(k\
\^2 + w\^2\)\), w\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 0, 
        w\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, {0, 0, 1, 
        0}}\)], "Output"],

Cell[BoxData[
    \({{\(-\(\((35\ \((\(-w\) + \(k\ w\)\/35)\))\)/\((\((k\^2 + 
                      w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\))\))\)\)\) + \(w\/35 + \(k\ w\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\
\/\(k\^2 + w\^2\)\), 0, 0, 
        0}, {\((k\ \((\(-w\) + \(k\ w\)\/35)\))\)/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) - \
\(w\ \((1 + k\^2\/\(k\^2 + w\^2\))\)\)\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\))\)\) + \(w\/35 + \(k\ w\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\
\^2 + w\^2\)\), \((35\ w)\)/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) + \
\((k\ w)\)/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) - \
\(w\ \((\(-1\) + \(35\ k\)\/\(k\^2 + w\^2\))\)\)\/\(35\ \((w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\))\)\), 0, 
        w/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) + \
\((k\ w)\)/\((35\ \((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) - \
\(w\ \((35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\))\)\)\/\(35\ \((w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\))\)\)}, {0, 0, 1, 
        0}, {\(\(-w\) + \(k\ w\)\/35\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\) + \(w\ \((1 + k\^2\/\(k\^2 + w\^2\))\)\)\/\(w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\)\) - \(k\ \((w\/35 + \(k\ w\)\/\(k\^2 + \
w\^2\))\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 
        w\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\) - \((35\ k\ w)\)/\((\((k\^2 \
+ w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) + \(w\ \((\(-1\) + \
\(35\ k\)\/\(k\^2 + w\^2\))\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 0, 
        w\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\) - \((k\ \
w)\)/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\) + \
\(w\ \((35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\))\)\)\/\(w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\)\)}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{\(m = {{\(w\/35 + \(k\ w\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ \
w\)\/\(k\^2 + w\^2\)\), \((35\ w)\)/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\), 0, 
          w/\((\((k\^2 + 
                    w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\))\)}, \
{\(1 + k\^2\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), \
\(\(-1\) + \(35\ k\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\
\), 0, \(35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\
\^2 + w\^2\)\)}, {\(\(-w\) + \(k\ w\)\/35\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\), w\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 0, 
          w\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, {0, 0, 1, 
          0}}\), "\[IndentingNewLine]", 
    RowBox[{"n", "=", 
      RowBox[{"(", GridBox[{
            {"0", "0", "0", "0"},
            {"0", "0", \(x - \(35  z\)\/\(k\^2 + w\^2\)\), "0"},
            {"0", \(\(-x\) + \(35  z\)\/\(k\^2 + w\^2\)\), "0", "0"},
            {"0", "0", \(\(k\_1\) \((x - wy\/35 + kz\/\(k\^2 + w\^2\))\)\), 
              "0"}
            }], ")"}]}], "\[IndentingNewLine]", \(A = m . n\)}], "Input"],

Cell[BoxData[
    \({{\(w\/35 + \(k\ w\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\), \(35\ w\)\/\(\((k\^2 + w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\
\))\)\), 0, 
        w\/\(\((k\^2 + w\^2)\)\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, \
{\(1 + k\^2\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), \
\(\(-1\) + \(35\ k\)\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\
\), 0, \(35\/\(k\^2 + w\^2\) + k\/\(k\^2 + w\^2\)\)\/\(w\/35 + \(35\ w\)\/\(k\
\^2 + w\^2\)\)}, {\(\(-w\) + \(k\ w\)\/35\)\/\(w\/35 + \(35\ w\)\/\(k\^2 + \
w\^2\)\), w\/\(w\/35 + \(35\ w\)\/\(k\^2 + w\^2\)\), 0, 
        w\/\(35\ \((w\/35 + \(35\ w\)\/\(k\^2 + w\^2\))\)\)}, {0, 0, 1, 
        0}}\)], "Output"],

Cell[BoxData[
    \({{0, 0, 0, 0}, {0, 0, x - \(35\ z\)\/\(k\^2 + w\^2\), 
        0}, {0, \(-x\) + \(35\ z\)\/\(k\^2 + w\^2\), 0, 0}, {0, 
        0, \((kz\/\(k\^2 + w\^2\) - wy\/35 + x)\)\ k\_1, 0}}\)], "Output"],

Cell[BoxData[
    \({{0, 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -