📄 重要.nb
字号:
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.0'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 15925, 389]*)
(*NotebookOutlinePosition[ 16587, 412]*)
(* CellTagsIndexPosition[ 16543, 408]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
\(u = w\), "\[IndentingNewLine]",
\({{\((\((35\ kz + \((k\^2 + t\^2)\)\ \((t\ y -
35\ x)\))\)\ \((35\ \((k\^2\ x + t\^2\ x -
35\ z)\) - \((k\^2 +
t\^2)\)\ u\ k\_1)\))\)/\((\((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 +
t\^2)\))\)}, {\(-\((\((35\ kz + \((k\^2 +
t\^2)\)\ \((t\ y - 35\ x)\))\)\ \((\((\(-35\)\ k +
k\^2 + t\^2)\)\ \((k\^2\ x + t\^2\ x -
35\ z)\) + \((35 + k)\)\ \((k\^2 +
t\^2)\)\ u\ k\_1)\))\)\)/\((t\ \((k\^2 + t\^2)\)\^2\
\ \((1225 + k\^2 +
t\^2)\))\)}, {\((\((\(-\(kz\/\(k\^2 +
t\^2\)\)\) - \(t\ y\)\/35 +
x)\)\ \((\(-35\)\ x + \(1225\ z\)\/\(k\^2 + t\^2\) +
u\ k\_1)\))\)/\((35\ \((1\/35 +
35\/\(k\^2 + t\^2\))\))\)}, {u\ \((x - \(35\ z\)\/\(k\^2 + \
t\^2\))\)}}\)}], "Input"],
Cell[BoxData[
\(w\)], "Output"],
Cell[BoxData[
\({{\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((35\ \((k\^2\ x + t\^2\ x -
35\ z)\) - \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((\((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 +
t\^2)\))\)}, {\(-\(\((\((35\ kz + \((k\^2 +
t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\)\)}, {\((\((\(-\(kz\/\(k\^2 + t\^2\)\)\) +
x - \(t\ y\)\/35)\)\ \((\(-35\)\ x + \(1225\ z\)\/\(k\^2 + \
t\^2\) + w\ k\_1)\))\)/\((35\ \((1\/35 +
35\/\(k\^2 + t\^2\))\))\)}, {w\ \((x - \(35\ z\)\/\(k\^2 + \
t\^2\))\)}}\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
\(F\_1 = \((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((35\ \((k\^2\ x + t\^2\ x -
35\ z)\) - \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((\((k\^2 + t\^2)\)\^2\ \((1225 \
+ k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(F\_2 = \(-\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(F\_3 = \((\((\(-\(kz\/\(k\^2 + t\^2\)\)\) +
x - \(t\ y\)\/35)\)\ \((\(-35\)\ x + \(1225\ z\)\/\(k\^2 + \
t\^2\) + w\ k\_1)\))\)/\((35\ \((1\/35 +
35\/\(k\^2 + t\^2\))\))\)\), "\[IndentingNewLine]",
\(F\_4 =
w\ \((x - \(35\ z\)\/\(k\^2 + t\^2\))\)\), "\[IndentingNewLine]",
\(Simplify[D[F\_1, {x, 2}] + D[F\_1, {y, 2}]]\)}], "Input"],
Cell[BoxData[
\(\(\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x + t\ y)\))\)\ \((35\ \
\((k\^2\ x + t\^2\ x - 35\ z)\) - \((k\^2 + t\^2)\)\ w\ k\_1)\)\)\/\(\((k\^2 \
+ t\^2)\)\^2\ \((1225 + k\^2 + t\^2)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\)\)\)], "Output"],
Cell[BoxData[
\(\(\((\(-\(kz\/\(k\^2 + t\^2\)\)\) + x - \(t\ y\)\/35)\)\ \((\(-35\)\ x \
+ \(1225\ z\)\/\(k\^2 + t\^2\) + w\ k\_1)\)\)\/\(35\ \((1\/35 + 35\/\(k\^2 + \
t\^2\))\)\)\)], "Output"],
Cell[BoxData[
\(w\ \((x - \(35\ z\)\/\(k\^2 + t\^2\))\)\)], "Output"],
Cell[BoxData[
\(\(-\(2450\/\(1225 + k\^2 + t\^2\)\)\)\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
\(F\_1 = \((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((35\ \((k\^2\ x + t\^2\ x -
35\ z)\) - \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((\((k\^2 + t\^2)\)\^2\ \((1225 \
+ k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(F\_2 = \(-\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(Simplify[D[F\_2, {x, 2}] + D[F\_2, {y, 2}]]\)}], "Input"],
Cell[BoxData[
\(\(\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x + t\ y)\))\)\ \((35\ \
\((k\^2\ x + t\^2\ x - 35\ z)\) - \((k\^2 + t\^2)\)\ w\ k\_1)\)\)\/\(\((k\^2 \
+ t\^2)\)\^2\ \((1225 + k\^2 + t\^2)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\)\)\)], "Output"],
Cell[BoxData[
\(\(70\ \((\(-35\)\ k + k\^2 + t\^2)\)\)\/\(t\ \((1225 + k\^2 + t\^2)\)\)\
\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
\(F\_1 = \((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((35\ \((k\^2\ x + t\^2\ x -
35\ z)\) - \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((\((k\^2 + t\^2)\)\^2\ \((1225 \
+ k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(F\_2 = \(-\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(Simplify[
D[F\_1, {x, 2}] - D[F\_1, {y, 2}] -
2*D[F\_2, {x, 1}, {y, 1}]]\)}], "Input"],
Cell[BoxData[
\(\(\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x + t\ y)\))\)\ \((35\ \
\((k\^2\ x + t\^2\ x - 35\ z)\) - \((k\^2 + t\^2)\)\ w\ k\_1)\)\)\/\(\((k\^2 \
+ t\^2)\)\^2\ \((1225 + k\^2 + t\^2)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\)\)\)], "Output"],
Cell[BoxData[
\(\(2\ \((\(-1225\) - 35\ k + k\^2 + t\^2)\)\)\/\(1225 + k\^2 + \
t\^2\)\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
\(F\_1 = \((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((35\ \((k\^2\ x + t\^2\ x -
35\ z)\) - \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((\((k\^2 + t\^2)\)\^2\ \((1225 \
+ k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(F\_2 = \(-\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\), "\[IndentingNewLine]",
\(Simplify[
D[F\_2, {x, 2}] - D[F\_2, {y, 2}] +
2*D[F\_1, {x, 1}, {y, 1}]]\)}], "Input"],
Cell[BoxData[
\(\(\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x + t\ y)\))\)\ \((35\ \
\((k\^2\ x + t\^2\ x - 35\ z)\) - \((k\^2 + t\^2)\)\ w\ k\_1)\)\)\/\(\((k\^2 \
+ t\^2)\)\^2\ \((1225 + k\^2 + t\^2)\)\)\)], "Output"],
Cell[BoxData[
\(\(-\(\((\((35\ kz + \((k\^2 + t\^2)\)\ \((\(-35\)\ x +
t\ y)\))\)\ \((\((\(-35\)\ k + k\^2 +
t\^2)\)\ \((k\^2\ x + t\^2\ x - 35\ z)\) + \((35 +
k)\)\ \((k\^2 +
t\^2)\)\ w\ k\_1)\))\)/\((t\ \((k\^2 + t\^2)\)\^2\ \
\((1225 + k\^2 + t\^2)\))\)\)\)\)], "Output"],
Cell[BoxData[
\(\(70\ \((\(-35\)\ k + k\^2 + 2\ t\^2)\)\)\/\(t\ \((1225 + k\^2 + \
t\^2)\)\)\)], "Output"]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -