📄 fft-cpp fromliu.txt
字号:
/*************************************************************************
* 函数名称:
* FFT()
* 参数:
* complex<double> * TD - 指向时域数组的指针
* complex<double> * FD - 指向频域数组的指针
* r -2的幂数,即迭代次数
* 返回值:
* 无。
* 说明:
* 该函数用来实现快速付立叶变换。
************************************************************************/
VOID CDibImage::FFT(complex<double> * TD, complex<double> * FD, int r)
{
LONG count; // 付立叶变换点数
int i,j,k; // 循环变量
int bfsize,p;
double angle; // 角度
complex<double> *W,*X1,*X2,*X;
count = 1 << r; // 计算付立叶变换点数
// 分配运算所需存储器
W = new complex<double>[count / 2];
X1 = new complex<double>[count];
X2 = new complex<double>[count];
// 计算加权系数
for(i = 0; i < count / 2; i++)
{
angle = -i * PI * 2 / count;
W[i] = complex<double> (cos(angle), sin(angle));
}
// 将时域点写入X1
memcpy(X1, TD, sizeof(complex<double>) * count);
// 采用蝶形算法进行快速付立叶变换
for(k = 0; k < r; k++)
{
for(j = 0; j < 1 << k; j++)
{
bfsize = 1 << (r-k);
for(i = 0; i < bfsize / 2; i++)
{
p = j * bfsize;
X2[i + p] = X1[i + p] + X1[i + p + bfsize / 2];
X2[i + p + bfsize / 2] = (X1[i + p] - X1[i + p + bfsize / 2])
* W[i * (1<<k)];
}
}
X = X1;
X1 = X2;
X2 = X;
}
// 重新排序
for(j = 0; j < count; j++)
{
p = 0;
for(i = 0; i < r; i++)
{
if (j&(1<<i))
{
p+=1<<(r-i-1);
}
}
FD[j]=X1[p];
}
delete W;
delete X1;
delete X2;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -