📄 hough.m
字号:
I = imread(['/home/s0677966/aip5/locIm/' 'F5-7b'],'bmp');
%or threshold its edges
figure(1)
E = edge(I);
imshow(I);
title ('Gradient Image')
%Use matlab's radon function to compute the hough transform:
theta = (0:179)';
[R,xp] = radon(E,theta);
figure(2)
imagesc(theta,xp,R), colorbar;
xlabel ('theta (deg)'), ylabel ('rho (pixels from center)')
title('Line Space');
plt=1;
for peaks = 60:20:100
%Find peaks in the linespace:
i = find(R>peaks);
%Sort the output and pick the top lines
[foo,ind] = sort(-R(i));
k = i(ind(1:size(i)));
%Convert linear index into coordinates of the peaks.
[y,x] = ind2sub(size(R),k);
%Find the theta and rho values for the peak coordinates.
t = -theta(x)*pi/180;
r = xp(y);
%The lines parameters are computed as follows. The line parameters have the coefficents of the equation Ax + By + C = 0,
%and are invarient to scale. However this particular scaling will produce the distance of a point to the line with the dot
%product: [A; B; C]' * [x; y; 1].
lines = [cos(t) sin(t) -r];
%Transform the line from the center of the image to the upper left. (The minus ones are for matlabs 1 based coordinates.)
cx = size(I,2)/2-1;
cy = size(I,1)/2-1;
lines(:,3) = lines(:,3) - lines(:,1)*cx - lines(:,2)*cy;
%Here are the top lines drawn on the gradient image
figure(3+plt)
text1='Gradient image with lines - Accumulator > ';
text2=num2str(peaks);
text=strcat(text1,text2);
imshow(E); title(text);
draw_lines(lines);
plt=plt+1;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -