📄 validity_index.m
字号:
% Kaijun WANG, sunice9@yahoo.com, Oct. 2006, March 2007
NC = N1:N;
labels = classlabel;
AR = zeros(1,N);
Rand = zeros(1,N);
Mirkin = zeros(1,N);
Hubert = zeros(1,N);
Sil = zeros(1,N);
DB = zeros(1,N);
CH = zeros(1,N);
KL = zeros(1,N);
Ha = zeros(1,N);
Hom = zeros(1,N);
Sep = zeros(1,N);
wtertra = zeros(1,N);
% (1) External validity indices when true labels are known
for i = NC
[AR(i), Rand(i), Mirkin(i), Hubert(i)] = ...
valid_RandIndex(labels(:,i),truelabels);
end
if nk > 1
valid_errorate(labels(:,nk), truelabels); % error rate if true labels are given
end
Re = strcmp(Rd, 'euclidean');
% (2) Internal validity indices when true labels are unknown
for i = NC
R = silhouette(data, labels(:,i), Rd);
Sil(i) = mean(R); % average Silhouette
% Davies-Bouldin, Calinski-Harabasz, Krzanowski-Lai
[DB(i), CH(i), KL(i), Ha(i), ST] = ...
valid_internal_deviation(data,labels(:,i), Re);
S = ind2cluster(labels(:,i));
[Hom(i), Sep(i), wtertra(i)] ... % weighted inter/intra ratio
= valid_internal_intra(Dist, S, Re, dmax);
end
% Homogeneity-Separation
Hom = dmax*Hom;
Sep = dmax*Sep;
%ER(NC) = (1-sqrt(NC).*NC/nrow);
%Hom = ER.*(Hom-Sep);
kl = KL(NC);
ha = Ha(NC);
nl = length(NC);
S = trace(ST);
kl = [S kl];
ha = [S ha];
R = abs(kl(1:nl)-kl(2:nl+1));
S = [R(2: end) R(end)];
kl = R./S;
kl(nl) = kl(nl-1);
R = ha(1:nl)./ha(2:nl+1);
ha = (R-1).*(nrow-[NC(1)-1 NC(1:nl-1)]-1);
KL(NC) = kl;
Ha(NC) = ha;
% (3) plotting indices
SR = [Rand; AR; Mirkin; Hubert; Sil; DB; CH; KL; Ha; wtertra; Hom; Sep];
kfind = [20 20 20 20 2 1 2 2 5 2 20 20];
FR = {'Rand', 'Adjusted Rand', 'Mirkin', 'Hubert', 'Silhouette (Sil)'...
'Davies-Bouldin (DB)', 'Calinski-Harabasz (CH)', 'Krzanowski-Lai (KL)', ...
'Hartigan', 'weighted inter-intra (Wint)', 'Homogeneity', 'Separation'};
valid_index_plot(SR(:,NC), NC, kfind, FR);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -