⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nn.cfg

📁 An open source handwriting recongnition package!!!
💻 CFG
📖 第 1 页 / 共 2 页
字号:
# CommonPreProc::dehookTraces;# CommonPreProc::normalizeOrientation;# CommonPreProc::resampleTraceGroup;# Default value: {CommonPreProc::normalizeSize,CommonPreProc::resampleTraceGroup,CommonPreProc::normalizeSize}#-------------------------------------------------------------------------------NNPreprocSequence={CommonPreProc::normalizeSize,CommonPreProc::resampleTraceGroup,CommonPreProc::normalizeSize}#---------------------------------------#	TRAINING#---------------------------------------#-------------------------------------------------------------------------------# NNTrainPrototypeSelectionMethod# # Description: This is used to specify the prototype selection method to be used # while training the shape recognizer. When set to hier-clustering, the # prototypes are selected using hierarchical clustering method.## Valid value: [hier-clustering]# Default value: hier-clustering#-------------------------------------------------------------------------------NNTrainPrototypeSelectionMethod=hier-clustering#-------------------------------------------------------------------------------# NNTrainPrototypeReductionFactorPerClass## Description: This config parameter is used only when the prototype selection # is clustering. This config parameter is used to specify the amount of the # initial prototypes to be excluded during prototype selection.  # Set it to automatic if the number of clusters is to be determined # automatically. Set it to none if no prototype selection is required. If the # value of this parameter is set to a number between 1-100, say 25, then 75% # (i.e 100-25) of the initial training data are retained as prototypes. # This parameter can be specified only if the NNTrainNumPrototypesPerClass# is not specified.## Valid value: [automatic | none | any real number from 0-100] # Default value: automatic#-------------------------------------------------------------------------------NNTrainPrototypeReductionFactorPerClass = none#-------------------------------------------------------------------------------# NNTrainNumPrototypesPerClass## Description: This config parameter is used only when the prototype selection # is clustering. This is used to specify the number of prototypes to be selected # from the training data. This parameter can be specified only if # PrototypeReductionFactor is not specified. This config entry is commented as # only one of NNTrainPrototypeReductionFactorPerClass or # NNTrainNumPrototypesPerClass can be active in a valid cfg file.## Valid value: [automatic | none | any integer from 1-N]#              (N is the number of samples # per class)# Default value: automatic#-------------------------------------------------------------------------------  #NNTrainNumPrototypesPerClass=automatic# Note: Only one of either PrototypeReductionFactor or NumClusters can be # enabled at any particular instance #-----------------------------------------#	FEATURE EXTRACTION#-----------------------------------------#-------------------------------------------------------------------------------# FeatureExtractor## Description: The configuration value is used to specify the feature extraction # module to be used for feature extraction. The point float feature extraction # module extracts the x,y,cosine and sine angle features at every point of the # character.## Valid value: [PointFloatShapeFeatureExtractor]# Default value: PointFloatShapeFeatureExtractor#-------------------------------------------------------------------------------FeatureExtractor=PointFloatShapeFeatureExtractor#-----------------------------------------#	RECOGNITION#-----------------------------------------#-------------------------------------------------------------------------------# NNRecoDTWEuFilterOutputSize# # Description: This config parameter is used to set the number of nearest # neighbours (filtered based on euclidean distance)to be considered for # calculating dtw distance. Set to all if all samples are to be considered for# calculating dtw distance. This is mainly used to increase the speed of # recognition.## Valid value: [all| any integer from 1-N](N is the size of prototype set)  # Default Value: all#-------------------------------------------------------------------------------NNRecoDTWEuFilterOutputSize = all#-------------------------------------------------------------------------------# NNRecoRejectThreshold# # Description: Threshold to reject the test sample. If the confidence obtained # for the recognition of test sample is less than this threshold then the test # sample is rejected. ## Valid value: Any real number from 0-1# Default value: 0.001#-------------------------------------------------------------------------------NNRecoRejectThreshold = 0.001#-------------------------------------------------------------------------------# NNRecoNumNearestNeighbors# # Description: Number of nearest neighbors to be considered during recognition# and computation of confidence. If the value is set to 1, nearest neighbor # classifier is used, otherwise k-nearest neighbor or Adaptive k-nearest # neighbor classifiers are used. By default, nearest neighbor classifier is used.## Valid value: Any integer >= 1# Default value: 1#-------------------------------------------------------------------------------NNRecoNumNearestNeighbors = 1#-------------------------------------------------------------------------------# NNRecoUseAdaptiveKNN## Description: This parameter is used to specify whether Adaptive k-nearest # neighbor recognizer (A-kNN) is to be used. If set to true, A-kNN recognizer is # used, otherwise kNN recognizer is used.  The A-kNN recognizer automatically # determines the number of nearest neighbors to be considered for recognition in # each class. If NNRecoNumNearestNeighbors is set to 1, this parameter is # automatically set to false and the manually set value will not be considered.## Valid value: [true | false]# Default value: false#-------------------------------------------------------------------------------NNRecoUseAdaptiveKNN = false#--------------------------------------------#      COMMON FOR TRAINING AND RECOGNITION#--------------------------------------------#-------------------------------------------------------------------------------# NNPrototypeDistanceMeasure## Description: This configuration parameter is used to specify the distance # measure to be used in clustering and recognition. DTW or Euclidean distance # measures can be used.# # Valid value [dtw | eu]# Default value: dtw#-------------------------------------------------------------------------------NNPrototypeDistanceMeasure = dtw#-------------------------------------------------------------------------------# NNDTWBandingRadius## Description: This configuration parameter specifies the banding radius# to be used for DTW computation. This is used to speed up the computation# process. If this value is zero no banding is done. The value is specified as# fraction of ResampTraceDimension to be used while computing the DTW# distance.## Valid values: Any real number > 0 and <= 1# Default Value: 0.33#-------------------------------------------------------------------------------NNDTWBandingRadius=0.33#-------------------------------------------------------------------------------# NNDTWBandingRadius## Description: This configuration parameter specifies the mode for # opening the mdt file. ## Valid values: ascii, binary# Default Value: ascii#-------------------------------------------------------------------------------NNMDTFileOpenMode=ascii

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -