📄 nn.cfg
字号:
# specify them in the preprocessing sequence.
#
# Valid values: Any sequence formed from the following set
# CommonPreProc::normalizeSize;
# CommonPreProc::removeDuplicatePoints;
# CommonPreProc::smoothenTraceGroup;
# CommonPreProc::dehookTraces;
# CommonPreProc::normalizeOrientation;
# CommonPreProc::resampleTraceGroup;
# Default value: {CommonPreProc::normalizeSize,CommonPreProc::resampleTraceGroup,CommonPreProc::normalizeSize}
#-------------------------------------------------------------------------------
NNPreprocSequence={CommonPreProc::normalizeSize,CommonPreProc::resampleTraceGroup,CommonPreProc::normalizeSize}
#---------------------------------------
# TRAINING
#---------------------------------------
#-------------------------------------------------------------------------------
# NNTrainPrototypeSelectionMethod
#
# Description: This is used to specify the prototype selection method to be used
# while training the shape recognizer. When set to hier-clustering, the
# prototypes are selected using hierarchical clustering method.
#
# Valid value: [hier-clustering]
# Default value: hier-clustering
#-------------------------------------------------------------------------------
NNTrainPrototypeSelectionMethod=hier-clustering
#-------------------------------------------------------------------------------
# NNTrainPrototypeReductionFactorPerClass
#
# Description: This config parameter is used only when the prototype selection
# is clustering. This config parameter is used to specify the amount of the
# initial prototypes to be excluded during prototype selection.
# Set it to automatic if the number of clusters is to be determined
# automatically. Set it to none if no prototype selection is required. If the
# value of this parameter is set to a number between 1-100, say 25, then 75%
# (i.e 100-25) of the initial training data are retained as prototypes.
# This parameter can be specified only if the NNTrainNumPrototypesPerClass
# is not specified.
#
# Valid value: [automatic | none | any real number from 0-100]
# Default value: automatic
#-------------------------------------------------------------------------------
NNTrainPrototypeReductionFactorPerClass = none
#-------------------------------------------------------------------------------
# NNTrainNumPrototypesPerClass
#
# Description: This config parameter is used only when the prototype selection
# is clustering. This is used to specify the number of prototypes to be selected
# from the training data. This parameter can be specified only if
# PrototypeReductionFactor is not specified. This config entry is commented as
# only one of NNTrainPrototypeReductionFactorPerClass or
# NNTrainNumPrototypesPerClass can be active in a valid cfg file.
#
# Valid value: [automatic | none | any integer from 1-N]
# (N is the number of samples # per class)
# Default value: automatic
#-------------------------------------------------------------------------------
#NNTrainNumPrototypesPerClass=automatic
# Note: Only one of either PrototypeReductionFactor or NumClusters can be
# enabled at any particular instance
#-----------------------------------------
# FEATURE EXTRACTION
#-----------------------------------------
#-------------------------------------------------------------------------------
# FeatureExtractor
#
# Description: The configuration value is used to specify the feature extraction
# module to be used for feature extraction. The point float feature extraction
# module extracts the x,y,cosine and sine angle features at every point of the
# character.
#
# Valid value: [PointFloatShapeFeatureExtractor]
# Default value: PointFloatShapeFeatureExtractor
#-------------------------------------------------------------------------------
FeatureExtractor=PointFloatShapeFeatureExtractor
#-----------------------------------------
# RECOGNITION
#-----------------------------------------
#-------------------------------------------------------------------------------
# NNRecoDTWEuFilterOutputSize
#
# Description: This config parameter is used to set the number of nearest
# neighbours (filtered based on euclidean distance)to be considered for
# calculating dtw distance. Set to all if all samples are to be considered for
# calculating dtw distance. This is mainly used to increase the speed of
# recognition.
#
# Valid value: [all| any integer from 1-N](N is the size of prototype set)
# Default Value: all
#-------------------------------------------------------------------------------
NNRecoDTWEuFilterOutputSize = all
#-------------------------------------------------------------------------------
# NNRecoRejectThreshold
#
# Description: Threshold to reject the test sample. If the confidence obtained
# for the recognition of test sample is less than this threshold then the test
# sample is rejected.
#
# Valid value: Any real number from 0-1
# Default value: 0.001
#-------------------------------------------------------------------------------
NNRecoRejectThreshold = 0.001
#-------------------------------------------------------------------------------
# NNRecoNumNearestNeighbors
#
# Description: Number of nearest neighbors to be considered during recognition
# and computation of confidence. If the value is set to 1, nearest neighbor
# classifier is used, otherwise k-nearest neighbor or Adaptive k-nearest
# neighbor classifiers are used. By default, nearest neighbor classifier is used.
#
# Valid value: Any integer >= 1
# Default value: 1
#-------------------------------------------------------------------------------
NNRecoNumNearestNeighbors = 1
#-------------------------------------------------------------------------------
# NNRecoUseAdaptiveKNN
#
# Description: This parameter is used to specify whether Adaptive k-nearest
# neighbor recognizer (A-kNN) is to be used. If set to true, A-kNN recognizer is
# used, otherwise kNN recognizer is used. The A-kNN recognizer automatically
# determines the number of nearest neighbors to be considered for recognition in
# each class. If NNRecoNumNearestNeighbors is set to 1, this parameter is
# automatically set to false and the manually set value will not be considered.
#
# Valid value: [true | false]
# Default value: false
#-------------------------------------------------------------------------------
NNRecoUseAdaptiveKNN = false
#--------------------------------------------
# COMMON FOR TRAINING AND RECOGNITION
#--------------------------------------------
#-------------------------------------------------------------------------------
# NNPrototypeDistanceMeasure
#
# Description: This configuration parameter is used to specify the distance
# measure to be used in clustering and recognition. DTW or Euclidean distance
# measures can be used.
#
# Valid value [dtw | eu]
# Default value: dtw
#-------------------------------------------------------------------------------
NNPrototypeDistanceMeasure = dtw
#-------------------------------------------------------------------------------
# NNDTWBandingRadius
#
# Description: This configuration parameter specifies the banding radius
# to be used for DTW computation. This is used to speed up the computation
# process. If this value is zero no banding is done. The value is specified as
# fraction of ResampTraceDimension to be used while computing the DTW
# distance.
#
# Valid values: Any real number > 0 and <= 1
# Default Value: 0.33
#-------------------------------------------------------------------------------
NNDTWBandingRadius=0.33
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -